An Averaging Theorem in $C^*$-Hilbert Modules and Operators without Adjoint
Funkcionalʹnyj analiz i ego priloženiâ, Tome 28 (1994) no. 3, pp. 88-92
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_1994_28_3_a12,
author = {E. V. Troitskii},
title = {An {Averaging} {Theorem} in $C^*${-Hilbert} {Modules} and {Operators} without {Adjoint}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {88--92},
year = {1994},
volume = {28},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1994_28_3_a12/}
}
E. V. Troitskii. An Averaging Theorem in $C^*$-Hilbert Modules and Operators without Adjoint. Funkcionalʹnyj analiz i ego priloženiâ, Tome 28 (1994) no. 3, pp. 88-92. http://geodesic.mathdoc.fr/item/FAA_1994_28_3_a12/
[1] Troitskii E. V., Izvestiya AN SSSR, cer. matem., 50:4 (1986), 849–865 | MR
[2] Troitskii E. V., Funkts. analiz i ego pril., 20:4 (1986), 58–64 | MR
[3] Mischenko A. S., Fomenko A. T., Izv. AN SSSR, ser. matem., 43:4 (1979), 831–859 | MR | Zbl
[4] Mischenko A. S., UMN, 34:6 (1979), 67–79 | MR | Zbl
[5] Dupre M. J., Fillmore P. A., “Triviality theorems for Hilbert modules”, Topics in Modern Operator Theory, 5th International Conference on Operator Theory. Timisoara and Herculane (Romania) (June 2–12, 1980), Birkhäuser Verlag, Basel–Boston–Stuttgart, 1981, 71–79 | DOI | MR
[6] Irmatov A., Ann. Global Anal. Geom., 7:2 (1989), 93–106 | DOI | MR | Zbl