Thoma's Theorem and Representations of the Infinite Bisymmetric Group
Funkcionalʹnyj analiz i ego priloženiâ, Tome 28 (1994) no. 2, pp. 31-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1994_28_2_a3,
     author = {A. Yu. Okounkov},
     title = {Thoma's {Theorem} and {Representations} of the {Infinite} {Bisymmetric} {Group}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {31--40},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1994_28_2_a3/}
}
TY  - JOUR
AU  - A. Yu. Okounkov
TI  - Thoma's Theorem and Representations of the Infinite Bisymmetric Group
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1994
SP  - 31
EP  - 40
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1994_28_2_a3/
LA  - ru
ID  - FAA_1994_28_2_a3
ER  - 
%0 Journal Article
%A A. Yu. Okounkov
%T Thoma's Theorem and Representations of the Infinite Bisymmetric Group
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1994
%P 31-40
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1994_28_2_a3/
%G ru
%F FAA_1994_28_2_a3
A. Yu. Okounkov. Thoma's Theorem and Representations of the Infinite Bisymmetric Group. Funkcionalʹnyj analiz i ego priloženiâ, Tome 28 (1994) no. 2, pp. 31-40. http://geodesic.mathdoc.fr/item/FAA_1994_28_2_a3/

[1] Vershik A. M., Kerov S. V., “Kharaktery i faktor-predstavleniya beskonechnoi simmetricheskoi gruppy”, DAN SSSR, 257:5 (1981), 1037–1040 | MR | Zbl

[2] Vershik A. M., Kerov S. V., “Asimptoticheskaya teoriya kharakterov simmetricheskoi gruppy”, Funkts. analiz i ego pril., 15:4 (1981), 15–27 | MR | Zbl

[3] Olshanskii G. I., “Unitarnye predstavleniya $(G,K)$-par, svyazannykh s beskonechnoi simmetricheskoi gruppoi $S(\infty)$”, Algebra i analiz, 1:4 (1989), 178–209 | MR

[4] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, Mir, M., 1978 | MR

[5] Stenli R., Perechislitelnaya kombinatorika, Mir, M., 1990 | MR

[6] Aissen M., Schoenberg I. J., Whitney A. M., “On the generating function of totally positive sequences, I”, J. Analyse Math., 2 (1952), 93–103 | DOI | MR | Zbl

[7] Edrei A., “On the generating function of totally positive sequences, II”, J. Analyse Math., 2 (1952), 104–109 | DOI | MR | Zbl

[8] Olshanskii G. I., “Unitary representations of infinite-dimensional pairs $(G,K)$ and the formalism of R. Howe”, Representation of Lie groups and related topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, London, 1990, 269–463 | MR

[9] Olshanskii G. I., “On semigroups related to infinite-dimensional groups”, Advances in Soviet Math., 2 (1991), 67–101 | MR

[10] Thoma E., “Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzahlbar unendlichen symmetrischen Gruppe”, Math. Z., 85:1 (1964), 40–61 | DOI | MR | Zbl