Weil Representation and Norms of Gaussian Operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 28 (1994) no. 1, pp. 51-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1994_28_1_a4,
     author = {G. I. Olshanskii},
     title = {Weil {Representation} and {Norms} of {Gaussian} {Operators}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {51--67},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1994_28_1_a4/}
}
TY  - JOUR
AU  - G. I. Olshanskii
TI  - Weil Representation and Norms of Gaussian Operators
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1994
SP  - 51
EP  - 67
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1994_28_1_a4/
LA  - ru
ID  - FAA_1994_28_1_a4
ER  - 
%0 Journal Article
%A G. I. Olshanskii
%T Weil Representation and Norms of Gaussian Operators
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1994
%P 51-67
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1994_28_1_a4/
%G ru
%F FAA_1994_28_1_a4
G. I. Olshanskii. Weil Representation and Norms of Gaussian Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 28 (1994) no. 1, pp. 51-67. http://geodesic.mathdoc.fr/item/FAA_1994_28_1_a4/

[1] Azizov T. Ya., Iokhvidov I. S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR

[2] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1965 ; Наука, М., 1986 | MR | Zbl

[3] Berezin F. A., Shubin M. A., Uravnenie Shredingera, Nauka, M., 1983 | MR | Zbl

[4] Epperson J. B., “The hypercontractive approach to exactly bounding an operator with complex Gaussian kernel”, J. Funct. Anal., 87 (1989), 1–30 | DOI | MR

[5] Folland G. B., Harmonic analysis in phase space, Princeton Univ. Press, Princeton, New Jersey, 1989 | MR | Zbl

[6] Guillemin V., Sternberg S., “Some problems in integral geometry and some related problems in microlocal analysis”, Amer. J. Math., 101 (1979), 915–955 | DOI | MR | Zbl

[7] Hilgert J., “A note on Howe's oscillator semigroup”, Ann. Inst. Fourier, 39 (1989), 663–688 | DOI | MR

[8] Hilgert J., Neeb K.-H., Lie semigroups and their applications, Lecture Notes in Math., 1552, Springer-Verlag, 1993 | DOI | MR | Zbl

[9] Howe R., “The oscillator semigroup”, The Mathematical Heritage of Hermann Weyl, Proc. Symp. Pure Math., 48, Amer. Math. Soc., Providence, Rhode Island, 1988, 61–132 | DOI | MR

[10] Nazarov M., Oscillator semigroup over a non-Archimedean field, Mathematical Research Report Series No 121, University College of Swansea (November 1993) | MR

[11] Nazarov M., Neretin Yu., Olshanskii G., “Semi-groupes engendrés par la représentation de Weil du groupe symplectique de dimension infinie”, C. R. Acad. Sci. Paris Ser. I, 309 (1989), 443–446 | MR | Zbl

[12] Neretin Yu. A., “Ob odnoi polugruppe operatorov v bozonnom prostranstve Foka”, Funkts. analiz i ego pril., 24:2 (1990), 63–73 | MR | Zbl

[13] Neretin Yu. A., “Almost invariant structures and related representations of the diffeomorphism group of a circle”, Representation of Lie Groups and Related Topics, Advanced Studies in Contemp. Math., 7, eds. A. M. Vershik and D. P. Zhelobenko, Gordon Breach, New York etc., 1990, 245–267 | MR

[14] Neretin Yu. A., “Infinite-dimensional groups, their mantles, trains, and representations”, Topics in Representation Theory, Advances in Soviet Math., 2, ed. A. A. Kirillov, Amer. Math. Soc., Providence, Rhode Island, 1991, 103–171 | MR

[15] Neretin Yu. A., “Kategoriya bistokhasticheskikh mer i predstavleniya nekotorykh beskonechnomernykh grupp”, Mat. sb., 183:2 (1992), 52–76

[16] Olshanskii G. I., “Invariantnye konusy v algebrakh Li, polugruppy Li i golomorfnaya diskretnaya seriya”, Funkts. analiz i ego pril., 15:4 (1981), 58–66 | MR

[17] Olshanskii G. I., “Beskonechnomernye klassicheskie gruppy konechnogo $R$-ranga: opisanie predstavlenii i asimptoticheskaya teoriya”, Funkts. analiz i ego pril., 18:1 (1984), 28–42 | MR

[18] Olshanskii G. I., “Unitary representations of the infinite symmetric group: a semigroup approach”, Representations of Lie Groups and Lie Algebras, ed. A. A. Kirillov, Akademiai Kiado, Budapest, 1985, 181–197 | MR

[19] Olshanskii G. I., “Unitarnye predstavleniya $(G,K)$-par, svyazannykh s beskonechnoi simmetricheskoi gruppoi $S(\infty)$”, Algebra i analiz, 1:4 (1989), 178–209 | MR

[20] Olshanskii G. I., “Unitary representations of infinite-dimensional pairs $(G,K)$ and the formalism of R. Howe”, Representation of Lie Groups and Related Topics, Advanced Studies in Contemp. Math., 7, eds. A. M. Vershik and D. P. Zhelobenko, Gordon Breach, New York etc., 1990, 269–463 | MR

[21] Olshanskii G. I., “On semigroups related to infinite-dimensional groups”, Topics in Representation Theory, Advances in Soviet Math., 2, ed. A. A. Kirillov, Amer. Math. Soc., Providence, Rhode Island, 1991, 67–101 | MR

[22] Paneitz S. M., “Invariant convex cones and causality in semisimple Lie algebras and Lie groups”, J. Funct. Anal., 43 (1981), 313–359 | DOI | MR | Zbl

[23] Potapov V. P., “Multiplikativnaya struktura $J$-nerastyagivayuschikh matrits-funktsii”, Trudy Mosk. matem. o-va, 4, 1955, 125–236 | MR | Zbl

[24] Segal I. E., “The complex-wave representation of the free boson field”, Adv. Math. Studies, 3 (1978), 321–343 | MR | Zbl

[25] Shale D., “Linear symmetries of free boson fields”, Trans. Amer. Math. Soc., 103 (1962), 149–167 | DOI | MR | Zbl

[26] Vergne M., “Groupe symplectique et seconde quantification”, C. R. Acad. Sci. Paris Ser. A, 285 (1977), 191–194 | MR | Zbl