Jordan Algebras and Integrable Systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 4, pp. 40-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1993_27_4_a5,
     author = {S. I. Svinolupov},
     title = {Jordan {Algebras} and {Integrable} {Systems}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {40--53},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1993_27_4_a5/}
}
TY  - JOUR
AU  - S. I. Svinolupov
TI  - Jordan Algebras and Integrable Systems
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1993
SP  - 40
EP  - 53
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1993_27_4_a5/
LA  - ru
ID  - FAA_1993_27_4_a5
ER  - 
%0 Journal Article
%A S. I. Svinolupov
%T Jordan Algebras and Integrable Systems
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1993
%P 40-53
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1993_27_4_a5/
%G ru
%F FAA_1993_27_4_a5
S. I. Svinolupov. Jordan Algebras and Integrable Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 4, pp. 40-53. http://geodesic.mathdoc.fr/item/FAA_1993_27_4_a5/

[1] Calogero F., Degasperis A., “Nonlinear evolution equations solvable by the inverse spectral transform”, Nuovo Cimento B, 39 (1977), 1–53 | DOI | MR

[2] Dodd R. K., Fordy A. P., “On the integrability of a system of coupled KdV equations”, Phys. Lett. A, 89:4 (1982), 168–170 | DOI | MR

[3] Drinfeld V. G., Sokolov V. V., “Algebry Li i uravneniya tipa Kortevega–de Friza”, Sovremennye problemy matematiki, 24, VINITI, M., 1984, 81–180 | MR

[4] Athorn C., Fordy A. P., “Generalized KdV and MKdV equations associated with symmetric spaces”, J. Phys. A, 20 (1987), 1377–1386 | DOI | MR | Zbl

[5] Svinolupov S. I., “Iordanovy algebry i obobschennye uravneniya Kortevega–de Friza”, TMF, 87:3 (1991), 391–403 | MR | Zbl

[6] Jacobson N., Structure and representation of Jordan algebras, Providence, RI, 1968 | MR

[7] Melnikov O. V., Remeslennikov V. N., Romankov V. A., Skornyakov L. A., Shestakov I. P., Obschaya algebra, Nauka, M., 1990 | MR

[8] Meyberg K., “Jordan-Tripelsysteme und die Koecher-Konstruktion von Lie-Algebren”, Math. Z, 115:1 (1970), 58–78 | DOI | MR | Zbl

[9] Svinolupov S. I., “Generalized Schrödinger equations and Jordan pairs”, Comm. Math. Phys., 143 (1992), 559–575 | DOI | MR | Zbl

[10] Mikhailov A. V., Shabat A. B., Sokolov V. V., Symmetry approach to classification of integrable equations. What is integrability, Springer-Verlag, New York, Heidelberg, Berlin, 1991 | MR

[11] Albert A., “A structure theory for Jordan algebras”, Ann. of Math., 48 (1947), 546–567 | DOI | MR | Zbl

[12] Svinolupov S. I., “On the analogues of the Burgers equation”, Phys. Lett. A, 135:1 (1989), 32–36 | DOI | MR

[13] Sokolov V. V., “Psevdosimmetrii i differentsialnye podstanovki”, Funkts. analiz i ego prilozh., 22:2 (1988), 47–56 | MR | Zbl

[14] Fordy A. P., Kulish P., “Nonlinear Schrödinger equation and simple Lie algebras”, Comm. Math. Phys., 89 (1983), 427–443 | DOI | MR | Zbl

[15] Loos C., Jordan pairs, Lecture Notes in Math., 460, Springer-Verlag, New York, Heidelberg, Berlin, 1975 | DOI | MR | Zbl

[16] Svinolupov S. I., Yamilov R. I., “The multi-field Schrödinger lattices”, Phys. Lett. A, 160 (1991), 548–552 | DOI | MR