Topological Classification of Integrable Geodesic Flows on Orientable Two-Dimensional Riemannian Manifolds with Additional Integral Depending on Momenta Linearly or Quadratically
Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 3, pp. 42-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1993_27_3_a4,
     author = {Nguyen Tien Zung and L. S. Polyakova and E. N. Selivanova},
     title = {Topological {Classification} of {Integrable} {Geodesic} {Flows} on {Orientable} {Two-Dimensional} {Riemannian} {Manifolds} with {Additional} {Integral} {Depending} on {Momenta} {Linearly} or {Quadratically}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {42--56},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1993_27_3_a4/}
}
TY  - JOUR
AU  - Nguyen Tien Zung
AU  - L. S. Polyakova
AU  - E. N. Selivanova
TI  - Topological Classification of Integrable Geodesic Flows on Orientable Two-Dimensional Riemannian Manifolds with Additional Integral Depending on Momenta Linearly or Quadratically
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1993
SP  - 42
EP  - 56
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1993_27_3_a4/
LA  - ru
ID  - FAA_1993_27_3_a4
ER  - 
%0 Journal Article
%A Nguyen Tien Zung
%A L. S. Polyakova
%A E. N. Selivanova
%T Topological Classification of Integrable Geodesic Flows on Orientable Two-Dimensional Riemannian Manifolds with Additional Integral Depending on Momenta Linearly or Quadratically
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1993
%P 42-56
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1993_27_3_a4/
%G ru
%F FAA_1993_27_3_a4
Nguyen Tien Zung; L. S. Polyakova; E. N. Selivanova. Topological Classification of Integrable Geodesic Flows on Orientable Two-Dimensional Riemannian Manifolds with Additional Integral Depending on Momenta Linearly or Quadratically. Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 3, pp. 42-56. http://geodesic.mathdoc.fr/item/FAA_1993_27_3_a4/

[1] Fomenko A. T., Simplekticheskaya geometriya. Metody i prilozheniya, MGU, M., 1988 | MR

[2] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl

[3] Fomenko A. T, Tsishang Kh., “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 378–407 | MR | Zbl

[4] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR

[5] Birkgof Dzh. D., Dinamicheskie sistemy, OGIZ, M.-L., 1941

[6] Kolokoltsov V. N., “Geodezicheskie potoki na dvumernykh mnogoobraziyakh s dopolnitelnym polinomialnym po skorostyam pervym integralom”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 994–1010 | MR

[7] Kolokoltsov V. N., “Novye primery mnogoobrazii s zamknutymi geodezicheskimi”, Vestn. MGU. Cer. matem., mekh., 1984, no. 4, 80–82 | MR

[8] Nguen Ten Zung, Fomenko A..T., “Topologicheskaya klassifikatsiya integriruemykh bottovskikh nevyrozhdennykh gamiltonianov na izoenergeticheskoi trekhmernoi sfere”, UMN, 45:6 (1990), 91–111 | MR

[9] Kozlov V. V., “Topologicheskie prepyatstviya k integriruemosti naturalnykh mekhanicheskikh sistem”, DAN SSSR, 249:6 (1979), 1299–1302 | MR | Zbl

[10] Darboux G., Leçons sur la théorie generale des surfaces et les applications géometriques du calcul infinitesimal, Vol. 3, Gautier–Villar, Paris, 1891 | MR

[11] Levi-Civita T., “Sulle transformazioni della equazioni dinamiche”, Annali di Mat., 2:24 (1896), 255–300 | DOI | Zbl