Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1993_27_3_a1, author = {D. P. Zhelobenko}, title = {Constructive {Modules} and {Extremal} {Projectors} over {Chevalley} {Algebras}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {5--14}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {1993}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1993_27_3_a1/} }
D. P. Zhelobenko. Constructive Modules and Extremal Projectors over Chevalley Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 3, pp. 5-14. http://geodesic.mathdoc.fr/item/FAA_1993_27_3_a1/
[1] Zhelobenko D. P., “$S$-algebry i moduli Verma nad reduktivnymi algebrami Li”, DAN SSSR, 273:4 (1983), 785–788 | MR | Zbl
[2] Zhelobenko D. P., “Ekstremalnye kotsikly na gruppakh Veilya”, Funkts. analiz i ego pril., 21:3 (1987), 11–21 | MR | Zbl
[3] Zhelobenko D. P., “Ekstremalnye proektory i obobschennye algebry Mikelsona nad reduktivnymi algebrami Li”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 758–773 | MR
[4] Zhelobenko D. P., “An introduction to the theory of $S$-algebras over reductive Lie algebras”, Representations of Lie groups and related topics, Adv. Study in Contemporary Math., 7, Gordon and Breach, NY, 1990 | MR | Zbl
[5] Zhelobenko D. P., “$S$-algebry i moduli Kharish-Chandry nad reduktivnymi algebrami Li”, DAN SSSR, 283:5 (1985) | MR | Zbl
[6] Zhelobenko D. P., “Ob ekstremalnykh proektorakh nad reduktivnymi algebrami Li”, Rasseyanie, reaktsii, perekhody v kvantovykh sistemakh i metody simmetrii, Obninsk, 1990
[7] Zhelobenko D. P., “Konstruktivnye moduli i ekstremalnye proektory nad reduktivnymi algebrami Li”, Metody simmetrii v fizike, Tbilisi, 1991 | Zbl
[8] Deodhar V. V., Gabber O., Kac V. G., “Structure of some categories of representations of infinite dimensional Lie algebras”, Adv. in Math., 45 (1982), 92–116 | DOI | MR | Zbl
[9] Kac V. G., Infinite dimensional Lie algebras, Cambridge Univ. Press, Cambridge, 1985 | MR | Zbl
[10] Kac V. G., “Laplace operators of infinite dimensional Lie algebra and theta-functions”, Proc. Nat. Acad. Sci., 81 (1984), 645–647 | DOI | MR | Zbl
[11] Kac V. G., Kazhdan D. A., “Stucture of representations with highest weight of infinite dimensional Lie algebras”, Adv. in Math., 34 (1979), 97–108 | DOI | MR | Zbl
[12] Kashivara M., “The universal Verma module and the b-function”, Algebraic groups and related topics, Adv. Study in Pure Math., 6, 1985, 67–81 | DOI | MR
[13] Tolstoi V. N., “Ekstremalnye proektory dlya kontragredientnykh algebr Li i superalgebr Li konechnogo rosta”, UMN, 44:1 (1989), 211–212 | MR