Transition Probabilities for Continual Young Diagrams and the Markov Moment Problem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 2, pp. 32-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1993_27_2_a2,
     author = {S. V. Kerov},
     title = {Transition {Probabilities} for {Continual} {Young} {Diagrams} and the {Markov} {Moment} {Problem}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {32--49},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1993_27_2_a2/}
}
TY  - JOUR
AU  - S. V. Kerov
TI  - Transition Probabilities for Continual Young Diagrams and the Markov Moment Problem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1993
SP  - 32
EP  - 49
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1993_27_2_a2/
LA  - ru
ID  - FAA_1993_27_2_a2
ER  - 
%0 Journal Article
%A S. V. Kerov
%T Transition Probabilities for Continual Young Diagrams and the Markov Moment Problem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1993
%P 32-49
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1993_27_2_a2/
%G ru
%F FAA_1993_27_2_a2
S. V. Kerov. Transition Probabilities for Continual Young Diagrams and the Markov Moment Problem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 2, pp. 32-49. http://geodesic.mathdoc.fr/item/FAA_1993_27_2_a2/

[1] Greene C., Nijenhuis A., Wilf H., “A probabilistic proof of a formula for the number of Young tableaux of a given shape”, Adv. Math., 31 (1979), 104–109 | DOI | MR | Zbl

[2] Greene C., Nijenhuis A., Wilf H., “Another probabilistic method in the theory of Young tableaux”, J. Comb. Th. (A), 37 (1984), 127–135 | DOI | MR | Zbl

[3] Vershik A. M., Kerov S. V., “Asimptotika mery Plansherelya simmetricheskoi gruppy i predelnaya forma tablits Yunga”, DAN SSSR, 233 (1977), 1024–1027 | MR | Zbl

[4] Vershik A. M., Kerov S. V., “Asimptoticheskaya teoriya kharakterov simmetricheskoi gruppy”, Funkts. analiz i ego pril., 15:4 (1981), 15–27 | MR | Zbl

[5] Vershik A. M., Kerov S. V., “Asimptotika maksimalnoi i tipichnoi razmernostei neprivodimykh predstavlenii simmetricheskoi gruppy”, Funkts. analiz i ego pril., 19:1 (1985), 25–36 | MR | Zbl

[6] Vershik A. M., Kerov S. V., “Lokalno poluprostye algebry. Kombinatornaya teoriya i $K$-funktor”, Itogi nauki. Sovremennye problemy matematiki. Noveishie dostizheniya, 26, 1985, 3–56 | MR | Zbl

[7] Kerov S. V., “Asimptotika razdeleniya kornei ortogonalnykh mnogochlenov”, Algebra i analiz, 5:5 (1993), 68–86 | MR | Zbl

[8] Kerov S., Separation of roots of orthogonal polynomials and the limiting shape of generic large Young diagrams, Preprint University of Trondheim, 1992

[9] Kerov S. V., “$q$-analog algoritma sluchainogo bluzhdaniya po kryukam i sluchainye tablitsy Yunga”, Funkts. analiz i ego pril., 26:3 (1992), 35–45 | MR | Zbl

[10] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[11] Logan B. F., Shepp L. A., “A variational problem for random Young tableaux”, Adv. Math., 26 (1977), 206–222 | DOI | MR | Zbl

[12] Makdonald I., Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR