Topology of a Holomorphic Vector Field around an Isolated Singularity
Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 2, pp. 22-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1993_27_2_a1,
     author = {X. Gomez-Mont and J. Seade and A. Verjovsky},
     title = {Topology of a {Holomorphic} {Vector} {Field} around an {Isolated} {Singularity}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {22--31},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1993_27_2_a1/}
}
TY  - JOUR
AU  - X. Gomez-Mont
AU  - J. Seade
AU  - A. Verjovsky
TI  - Topology of a Holomorphic Vector Field around an Isolated Singularity
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1993
SP  - 22
EP  - 31
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1993_27_2_a1/
LA  - ru
ID  - FAA_1993_27_2_a1
ER  - 
%0 Journal Article
%A X. Gomez-Mont
%A J. Seade
%A A. Verjovsky
%T Topology of a Holomorphic Vector Field around an Isolated Singularity
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1993
%P 22-31
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1993_27_2_a1/
%G ru
%F FAA_1993_27_2_a1
X. Gomez-Mont; J. Seade; A. Verjovsky. Topology of a Holomorphic Vector Field around an Isolated Singularity. Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 2, pp. 22-31. http://geodesic.mathdoc.fr/item/FAA_1993_27_2_a1/

[1] Arnold V. I., “Zamechaniya ob osobennostyakh konechnykh korazmernostei v kompleksnykh dinamicheskikh sistemakh”, Funkts. analiz i ego pril., 3 (1969), 1–5 | MR

[2] Camacho C., Kuiper N., Palis V., “The topology of holomorphic flows with singularity”, Publ. Math. IHES, 48 (1978), 5–38 | DOI | MR | Zbl

[3] Camacho C., Lins A., Sad P., “Topological invariants and equidesingularization for holomorphic vector fields”, J. Diff. Geom., 20 (1984), 143–174 | MR | Zbl

[4] Gomez-Mont X., “Universal families of foliations by curves”, Singularités D'equations Differentielles, Asterisque, 150–151, eds. Cerveau D. and Moussu R., 1987, 109–129 | MR | Zbl

[5] Gomez-Mont X., Seade J., Verjovsky A., The index of a holomorphic flow with an isolated singularity, Preprint (to appear) | MR

[6] Guckenheimer I., “Hartman's theorem for complex flows in the Poincaré domain”, Comp. Math., 24 (1972), 75–82 | MR | Zbl

[7] Lopez de Medrano S., “The space of Siegel leads of a linear vector field”, Holomorphic Dynamics, Lecture notes in Math., 1345, eds. Gomez-Mont X. et al., Springer-Verlag, 1988, 233–245 | DOI | MR

[8] Milnor J., Singular Points of Complex Hypersurfaces, Ann. of Maths. Study, 61, Princeton University Press, 1968 | MR | Zbl

[9] Milnor J., Topology from the Differentiable Viewpoint, 5th edition, 1976., University Press of Virginia | MR

[10] Milnor J., Morse Theory, Ann. of Maths., 51, Princeton University Press, 1963 | MR | Zbl

[11] Sulivan D., “On the intersection ring of compact three manifolds”, Topology, 14 (1975), 275–277 | DOI | MR

[12] Thom R., “Généralization de la théorie de Morse et variété feuilletées”, Ann. Inst. Fourier, Grenoble, 14:1 (1964), 173–190 | DOI | MR | Zbl