Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1993_27_1_a6, author = {N. I. Chernov}, title = {On {Local} {Ergodicity} in {Hyperbolic} {Systems} with {Singularities}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {60--64}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {1993}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1993_27_1_a6/} }
N. I. Chernov. On Local Ergodicity in Hyperbolic Systems with Singularities. Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 1, pp. 60-64. http://geodesic.mathdoc.fr/item/FAA_1993_27_1_a6/
[1] Sinai Ya. G., “Ergodicheskie svoistva gaza Lorentsa”, Funkts. analiz i ego pril., 13:3 (1979), 46–59 | MR | Zbl
[2] Sinai Ya. G., Chernov N. I., “Ergodicheskie svoistva nekotorykh sistem dvumernykh diskov i trekhmernykh sharov”, UMN, 42:3 (1987), 153–174 | MR | Zbl
[3] Krámli A., Simányi N., Szasz D., “The $K$-property of three billiard balls”, Annals of Mathematics, 133 (1991), 37–72 | DOI | MR | Zbl
[4] Bunimovich L. A., Liverani C., Pellegrinotti A., Sukhov Yu. M., Ergodic systems of $N$ balls in a billiard table, Preprint, 1991 | MR
[5] Donnay V., Liverani C., “Potentials on the two-torus for which the Hamiltonian flow is ergodic”, Comm. Math. Phys., 135:2 (1991), 267–302 | DOI | MR | Zbl
[6] Markarian R., The fundamental theorem of Sinai–Chernov for dynamical systems with singularities, Preprint, 1991 | MR
[7] Krámli A., Simányi N., Szasz D., “A “transversal” fundamental theorem for semi-dispersing billiards”, Comm. Math. Phys., 129:3 (1990), 535–560 | DOI | MR | Zbl
[8] Wojtkowski M., “A system of one-dimensional balls with gravity”, Comm. Math. Phys., 126:3 (1990), 507–533 | DOI | MR | Zbl
[9] Wojtkowski M., “The system of one-dimensional balls in an external field”, Comm. Math. Phys., 127:2 (1990), 425–432 | DOI | MR | Zbl
[10] Chernov N. I., “The ergodicity of a Hamiltonian system of two particles in an external field”, Physica D (to appear) | MR
[11] Katok A., Strelcyn J.-M., Smooth maps with singularities: invariant manifolds, entropy and billiards, Lect. Notes Math., 1222, Springer-Verlag, 1987 | MR
[12] Oseledets V. I., “Multiplikativnaya ergodicheskaya teorema. Kharakteristicheskie pokazateli Lyapunova dinamicheskikh sistem”, Trudy MMO, 19, 1968, 179–210 | Zbl
[13] Wojtkowski M., “Invariant families of cones and Lyapunov exponents”, Ergod. Theory Dyn. Syst., 5:1 (1985), 145–161 | DOI | MR | Zbl
[14] Dinamicheskie sistemy – 2, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 2, VINITI, M., 1985