Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1993_27_1_a4, author = {A. V. Odesskii and B. L. Feigin}, title = {Constructions of {Sklyanin} {Elliptic} {Algebras} and {Quantum} $R${-Matrices}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {37--45}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {1993}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1993_27_1_a4/} }
TY - JOUR AU - A. V. Odesskii AU - B. L. Feigin TI - Constructions of Sklyanin Elliptic Algebras and Quantum $R$-Matrices JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1993 SP - 37 EP - 45 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1993_27_1_a4/ LA - ru ID - FAA_1993_27_1_a4 ER -
A. V. Odesskii; B. L. Feigin. Constructions of Sklyanin Elliptic Algebras and Quantum $R$-Matrices. Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 1, pp. 37-45. http://geodesic.mathdoc.fr/item/FAA_1993_27_1_a4/
[1] Mamford D., Abelevy mnogoobraziya, Mir, M., 1971
[2] Sklyanin E. K., “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniyami Yanga–Bakstera”, Funkts. analiz i ego pril., 16:4 (1982), 22–34 | MR
[3] Sklyanin E. K., “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniyami Yanga–Bakstera. II: Predstavleniya kvantovoi algebry”, Funkts. analiz i ego pril., 17:4 (1983), 34–48 | MR | Zbl
[4] Cherednik I. V., Ob $R$-matrichnom kvantovanii formalnoi gruppy tokov. Teoretiko-gruppovye metody v fizike, Trudy Yurmalskoi konferentsii. T. 2 (mai, 1985), Nauka, M., 1986 | MR
[5] Odesskii A. V., Feigin B. L., Algebry Sklyanina, assotsiirovannye s ellipticheskoi krivoi, izd. In-ta teor. fiziki AN USSR, Kiev, 1988 | MR
[6] Odesskii A. V., Feigin B. L., “Ellipticheskie algebry Sklyanina”, Funkts. analiz i ego pril., 23:3 (1989), 45–54 | MR
[7] Odesski A. V., “Rational degeneration of elliptic quadratic algebras”, Infinite Analysis (Kyoto, 1991), Adv. Ser. Math. Phys., 16, World Sci. Publ., 1992, 773–779 | MR
[8] Bergman G., “The diamond lemma for ring theory”, Adv. Math., 29 (1979), 175–218 | MR
[9] Priddy S., “Koszul resolution”, Trans. Amer. Math. Soc., 152 (1970), 39–60 | DOI | MR | Zbl