Phase-Locking for Mathieu-Type Torus Maps
Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 1, pp. 1-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1993_27_1_a0,
     author = {O. G. Galkin},
     title = {Phase-Locking for {Mathieu-Type} {Torus} {Maps}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--11},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1993_27_1_a0/}
}
TY  - JOUR
AU  - O. G. Galkin
TI  - Phase-Locking for Mathieu-Type Torus Maps
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1993
SP  - 1
EP  - 11
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1993_27_1_a0/
LA  - ru
ID  - FAA_1993_27_1_a0
ER  - 
%0 Journal Article
%A O. G. Galkin
%T Phase-Locking for Mathieu-Type Torus Maps
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1993
%P 1-11
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1993_27_1_a0/
%G ru
%F FAA_1993_27_1_a0
O. G. Galkin. Phase-Locking for Mathieu-Type Torus Maps. Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 1, pp. 1-11. http://geodesic.mathdoc.fr/item/FAA_1993_27_1_a0/

[1] Arnold V. I., “Zamechaniya o teorii vozmuschenii dlya zadach tipa Mate”, UMN, 38:4 (1983), 189–203 | MR

[2] Arnold V. I., “Malye znamenateli. I: Ob otobrazheniyakh okruzhnosti na sebya”, Izv. AN SSSR, ser. matem., 25 (1961), 21–86 | MR

[3] Galkin O. G., “Fazovyi zakhvat dlya vektornykh polei na tore tipa Mate”, Funkts. analiz i ego prilozh., 26.:1 (1992), 1–8 | MR | Zbl

[4] Khinchin A. Ya., Tsepnye drobi, Nauka, M., 1978 | MR

[5] Baesens C., Guckenheimer J., Kim S., MacKay R. S., “Three coupled oscillators: mode-locking, global bifurcations and toroidal chaos”, Physica D, 49 (1991), 387–475 | DOI | MR | Zbl

[6] Ecke R. E., Farmer J. D., Umberger D. K., Scaling of the Arnold tongues, 2 (1989), 175–196 | MR | Zbl

[7] Franks J., Misiurewicz M., “Rotation sets of toral flows”, Proc. Amer. Math. Soc., 109 (1990), 243–249 | DOI | MR | Zbl

[8] Galkin O. G., “Resonance regions for Mathieu type dynamical systems on a torus”, Physica D, 39 (1989), 287–298 | DOI | MR | Zbl

[9] Grebogi C., Ott E., Yorke J. A., “Attractors on an $n$-torus: quasiperiodicity versus chaos”, Physica D, 15 (1985), 354–373 | DOI | MR | Zbl

[10] Hall G. R., “Resonance zones in two-parameter families of circle homeomorphisms”, SIAM J. Math. Anal., 15 (1984), 1075–1081 | DOI | MR | Zbl

[11] Kim S., MacKay R. S., Guckenheimer J., “Resonance regions for families of torus maps”, Nonlinearity, 2 (1989), 391–404 | DOI | MR | Zbl

[12] Misiurewicz M., Ziemian K., “Rotation sets for maps of tori”, J. London Math. Soc., 40 (1989), 490–506 | DOI | MR

[13] Newhouse S., Palis J., Takens F., “Bifurcations and stability of families of diffeomorphisms”, Publ. Math. IHES, 57 (1983), 5–72 | DOI | MR