Universal completions of complex classical groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 26 (1992) no. 4, pp. 30-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1992_26_4_a2,
     author = {Yu. A. Neretin},
     title = {Universal completions of complex classical groups},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {30--44},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1992_26_4_a2/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Universal completions of complex classical groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1992
SP  - 30
EP  - 44
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1992_26_4_a2/
LA  - ru
ID  - FAA_1992_26_4_a2
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Universal completions of complex classical groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1992
%P 30-44
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1992_26_4_a2/
%G ru
%F FAA_1992_26_4_a2
Yu. A. Neretin. Universal completions of complex classical groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 26 (1992) no. 4, pp. 30-44. http://geodesic.mathdoc.fr/item/FAA_1992_26_4_a2/

[1] Danilov V.I., “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–134 | MR | Zbl

[2] Neretin Yu.A., “O kompleksnoi polugruppe, soderzhaschei gruppu diffeomorfizmov okruzhnosti”, Funkts. analiz i ego pril., 21:2 (1987), 82–83 | MR | Zbl

[3] Neretin Yu.A., “Golomorfnye prodolzheniya predstavlenii gruppy diffeomorfizmov okruzhnosti”, Matem. sb., 180:5 (1989), 635–657 | MR

[4] Neretin Yu.A., “Spinornoe predstavlenie beskonechnomernoi ortogonalnoi polugruppy i algebra Virasoro”, Funkts. analiz i ego pril., 23:3 (1989), 32–44 | MR

[5] Neretin Yu.A., “Ob odnoi polugruppe operatorov v bozonnom prostranstve Foka”, Funkts. analiz i ego pril., 24:2 (1990), 63–73 | MR | Zbl

[6] Neretin Yu.A., “Prodolzhenie predstavlenii klassicheskikh grupp do predstavlenii kategorii”, Algebra i analiz, 3:1 (1991), 176–202 | MR

[7] Sato I., Dzimbo M., Miva T., Golonomnye kvantovye polya I. Golonomnye kvantovye polya, Mir, M., 1983 | MR

[8] Serr Zh.P., Algebry Li i gruppy Li, Mir, M., 1969 | MR | Zbl

[9] Howe R., Moole S.S., “Asymptotic properties of unitary representations”, J. Funct. Anal., 32:18 (1979), 72–96 | DOI | MR | Zbl

[10] Nazarov M.L., Neretin Yu.A., Olshanskii G.L., “Semigroupes engendres par le representation de Weil du groupe symplectique de dimension infinie”, C. R. Acad. Sci. Paris Ser. 1, 309:7 (1989), 443–446 | MR | Zbl

[11] Neretin Yu.A., “Infinite-dimensional groupes. Their mantles, trains and representations”, Advances in Soviet Mathematics, 2 (1991), 102–172 | MR

[12] Olshanskii G.I., “Unitary representations of infinite symmetric groupe: semigroup approach”, Representations of Lie groupes and Lie algebras, Acad. Kiado, Budapest, 1985, 181–198 | MR

[13] Putcha M.S., “On linear algebraic semigroupes I, II”, Trans. Amer. Math. Soc., 259 (1980), 457–491 | DOI | MR

[14] Putcha M.S., “Reductive monoids are von Neumann regulars”, Algebra, 93 (1985), 237–245 | DOI | MR

[15] Renner L.E., “Classification of semisimple algebraic monoids”, Trans. Amer. Math. Soc, 292:1 (1985), 193–223 | DOI | MR | Zbl

[16] Semple J.G., “On complete quadrics I”, J. Lond. Math. Soc., 23 (1948), 258–267 | DOI | MR

[17] Semple J.G., “On complete quadrics II”, J. Lond. Math. Soc., 27 (1952), 280–287 | DOI | MR | Zbl

[18] Concini C., Prochesi C., “Complete symmetric varieties”, Lect. Notes Math., 996, 1983, 1–44 | DOI | MR | Zbl