@article{FAA_1992_26_3_a5,
author = {L. B. Parnovskii},
title = {The {Selberg} trace formula and {Selberg} zeta-function for cocompact discrete subgroups of $SO_+(1,n)$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {55--64},
year = {1992},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1992_26_3_a5/}
}
TY - JOUR AU - L. B. Parnovskii TI - The Selberg trace formula and Selberg zeta-function for cocompact discrete subgroups of $SO_+(1,n)$ JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1992 SP - 55 EP - 64 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/item/FAA_1992_26_3_a5/ LA - ru ID - FAA_1992_26_3_a5 ER -
L. B. Parnovskii. The Selberg trace formula and Selberg zeta-function for cocompact discrete subgroups of $SO_+(1,n)$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 26 (1992) no. 3, pp. 55-64. http://geodesic.mathdoc.fr/item/FAA_1992_26_3_a5/
[1] Selberg A., “Harmonic analysis and discontinuous groups on weakly symmetric Riemannian spaces with applications to Dirichlet series”, Indian Math. Soc., 20 (1956), 47–87 | MR | Zbl
[2] Hejhal D.A., The Selberg trace formula for $PSL(2,R)$, vol 1, Lect. Notes Math., 548, Springer-Veriag, Berlin–Heidelberg–New York, 1976 | DOI | MR | Zbl
[3] Gangolli R., “Zeta-functions of Selberg's type for compact space forms of symmetric spaces of rank one”, Illinois J. Math., 21 (1977), 1–42 | DOI | MR
[4] Elstrodt D., Gryunevald F., Menike D., “Razryvnye gruppy v trekhmernom giperbolicheskom prostranstve: Analiticheskaya teoriya i arifmeticheskie priblizheniya”, UMN, 38:1 (1983), 119–147 | MR | Zbl
[5] Elstrodt J., Grǔnewald F., Mennicke J., The Selberg zeta-functioa for cocompact discrete subgroups of $PSL(2,C)$, Elementary and Anailvtic Theory of Numbers, 17, PWN, Warsaw, 1985 | MR | Zbl
[6] Huber H., “Zur analytischen Theorie hyperbolischer Baumformen”, Math. Ann., 138 (1959), 1–26 ; 142 (1961), 385–398 | DOI | MR | Zbl | DOI | MR | Zbl
[7] Venkov A.B., Razlozhenie po avtomorfnym sobstvennym funktsiyam operatora Laplasa–Beltrami v klassicheskikh simmetricheskikh prostranstvakh ranga odin i formula sleda Selberga, Trudy MIAN, 125, 1973 | MR | Zbl