The Selberg trace formula and Selberg zeta-function for cocompact discrete subgroups of $SO_+(1,n)$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 26 (1992) no. 3, pp. 55-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1992_26_3_a5,
     author = {L. B. Parnovskii},
     title = {The {Selberg} trace formula and {Selberg} zeta-function for cocompact discrete subgroups of $SO_+(1,n)$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {55--64},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1992_26_3_a5/}
}
TY  - JOUR
AU  - L. B. Parnovskii
TI  - The Selberg trace formula and Selberg zeta-function for cocompact discrete subgroups of $SO_+(1,n)$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1992
SP  - 55
EP  - 64
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1992_26_3_a5/
LA  - ru
ID  - FAA_1992_26_3_a5
ER  - 
%0 Journal Article
%A L. B. Parnovskii
%T The Selberg trace formula and Selberg zeta-function for cocompact discrete subgroups of $SO_+(1,n)$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1992
%P 55-64
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1992_26_3_a5/
%G ru
%F FAA_1992_26_3_a5
L. B. Parnovskii. The Selberg trace formula and Selberg zeta-function for cocompact discrete subgroups of $SO_+(1,n)$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 26 (1992) no. 3, pp. 55-64. http://geodesic.mathdoc.fr/item/FAA_1992_26_3_a5/

[1] Selberg A., “Harmonic analysis and discontinuous groups on weakly symmetric Riemannian spaces with applications to Dirichlet series”, Indian Math. Soc., 20 (1956), 47–87 | MR | Zbl

[2] Hejhal D.A., The Selberg trace formula for $PSL(2,R)$, vol 1, Lect. Notes Math., 548, Springer-Veriag, Berlin–Heidelberg–New York, 1976 | DOI | MR | Zbl

[3] Gangolli R., “Zeta-functions of Selberg's type for compact space forms of symmetric spaces of rank one”, Illinois J. Math., 21 (1977), 1–42 | DOI | MR

[4] Elstrodt D., Gryunevald F., Menike D., “Razryvnye gruppy v trekhmernom giperbolicheskom prostranstve: Analiticheskaya teoriya i arifmeticheskie priblizheniya”, UMN, 38:1 (1983), 119–147 | MR | Zbl

[5] Elstrodt J., Grǔnewald F., Mennicke J., The Selberg zeta-functioa for cocompact discrete subgroups of $PSL(2,C)$, Elementary and Anailvtic Theory of Numbers, 17, PWN, Warsaw, 1985 | MR | Zbl

[6] Huber H., “Zur analytischen Theorie hyperbolischer Baumformen”, Math. Ann., 138 (1959), 1–26 ; 142 (1961), 385–398 | DOI | MR | Zbl | DOI | MR | Zbl

[7] Venkov A.B., Razlozhenie po avtomorfnym sobstvennym funktsiyam operatora Laplasa–Beltrami v klassicheskikh simmetricheskikh prostranstvakh ranga odin i formula sleda Selberga, Trudy MIAN, 125, 1973 | MR | Zbl