A $q$-analog of the hook walk algorithm and random Young tableaux
Funkcionalʹnyj analiz i ego priloženiâ, Tome 26 (1992) no. 3, pp. 35-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1992_26_3_a3,
     author = {S. V. Kerov},
     title = {A $q$-analog of the hook walk algorithm and random {Young} tableaux},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {35--45},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1992_26_3_a3/}
}
TY  - JOUR
AU  - S. V. Kerov
TI  - A $q$-analog of the hook walk algorithm and random Young tableaux
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1992
SP  - 35
EP  - 45
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1992_26_3_a3/
LA  - ru
ID  - FAA_1992_26_3_a3
ER  - 
%0 Journal Article
%A S. V. Kerov
%T A $q$-analog of the hook walk algorithm and random Young tableaux
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1992
%P 35-45
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1992_26_3_a3/
%G ru
%F FAA_1992_26_3_a3
S. V. Kerov. A $q$-analog of the hook walk algorithm and random Young tableaux. Funkcionalʹnyj analiz i ego priloženiâ, Tome 26 (1992) no. 3, pp. 35-45. http://geodesic.mathdoc.fr/item/FAA_1992_26_3_a3/

[1] Greene C., Nijenhuis A., Wilf H., “A probabilistic proof of a formula for the number of Young tableaux of a given shape”, Adv. Math., 31 (1979), 104–109 | DOI | MR | Zbl

[2] Greene C., Nijenhuis A., Wilf H., “Another probabilistic method in the theory of Young tableaux”, J. Comb. Th. (A), 37 (1984), 127–135 | DOI | MR | Zbl

[3] Frame J.S., Robinson G. de V., Thrall R. M., “The hook graphs of the symmetric group”, Canad. J. Math., 6 (1954), 316–324 | DOI | MR | Zbl

[4] Makdonald I., Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR

[5] Pittel V., “On growing a random Young tableau”, J. Comb. Th. (A), 41 (1986), 278–285 | DOI | MR | Zbl

[6] Kerov S.V., Vershik A.M., “Lokalno poluprostye algebry. Kombinatornaya teoriya i $K_0$-funktor”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 26, 1985, 3–56 | MR | Zbl

[7] Kerov S.V., Vershik A.M., “Kharaktery i realizatsii predstavlenii beekonechnomernoi algebry Gekke i invarianty uzlov”, DAN SSSR, 301 (1988), 777–780 | MR

[8] Knuth D., “An identity involving sums and products”, The Amer. Math. Mon., 97 (1990), 256–257 | DOI | MR

[9] Vershik A.M., “Formula kryukov i svyazannye s nei tozhdestva”, Zapiski seminarov LOMI, 172, 1989, 3–20

[10] Kirillov A.N., “Tozhdestvo Lagranzha i formula kryukov”, Zapiski seminarov LOMI, 172, 1989, 78–87 | MR

[11] Kerov S.V., “Realizatsii *-predstavlenii algebr Gekke i ortogonalnaya forma Yunga”, Zapiski seminarov LOMI, 161, 1987, 155–172 | MR