Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1992_26_3_a2, author = {V. M. Zakalyukin and R. M. Roberts}, title = {On stable singular {Lagrangian} varieties}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {28--34}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {1992}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1992_26_3_a2/} }
V. M. Zakalyukin; R. M. Roberts. On stable singular Lagrangian varieties. Funkcionalʹnyj analiz i ego priloženiâ, Tome 26 (1992) no. 3, pp. 28-34. http://geodesic.mathdoc.fr/item/FAA_1992_26_3_a2/
[1] Arnold V.I., “Kriticheskie tochki na mnogoobrazii s kraem, prostye gruppy Li $B_k$, $C_k$, $F_4$ i osobennosti evolyut”, UMN, 33:5 (1978), 91–105 | MR | Zbl
[2] Givental A.B., “Osobye utagranzhevy mnogoobraziya i ikh lagranzhevy proektsii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 33, VINITI, 1988, 55–112 | MR
[3] Scherbak O.P., “Volnovye fronty i gruppy otrazhenii”, UMN, 43:3 (1988), 125–160 | MR | Zbl
[4] Janeczko S., “Generating functions for images of Lagrangian submanifolds”, Math. Proc. Camb. Phil. Soc., 100 (1986) | DOI | MR | Zbl
[5] Zakalynkin V.M,, “Generating ideals for Lagrangian varieties”, Advances in Soviet Math., 1 (1990), 201–210 | MR