A bijective proof of the hook-length formula and its analogs
Funkcionalʹnyj analiz i ego priloženiâ, Tome 26 (1992) no. 3, pp. 80-82
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_1992_26_3_a10,
author = {I. M. Pak and A. V. Stoyanovskii},
title = {A bijective proof of the hook-length formula and its analogs},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {80--82},
year = {1992},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1992_26_3_a10/}
}
I. M. Pak; A. V. Stoyanovskii. A bijective proof of the hook-length formula and its analogs. Funkcionalʹnyj analiz i ego priloženiâ, Tome 26 (1992) no. 3, pp. 80-82. http://geodesic.mathdoc.fr/item/FAA_1992_26_3_a10/
[1] Makdonald I., Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR
[2] James P., Kerber A., The representation theory of the symmetric group, Addisonn-Wesley, 1981 | MR
[3] Konstant B., Amer. J. Math., 85 (1963), 327–404 | DOI | MR
[4] Stanlei R., Studies of Appl. Math., 1:2, 167–188
[5] Steinberg R., Trans. Amer. Math. Soc., 71 (1956), 274–282 | DOI | MR
[6] Lustig G., Invent. Math., 43 (1977), 25–175 | MR
[7] Kirillov A.A., FAN, 18:1 (1984), 74–75 | MR | Zbl
[8] Kirillov A.A., Pak I.M., Funkts. analiz i ego pril., 24:3 (1990), 9–13 | MR | Zbl
[9] Stenli R., Perechislitelnaya kombinatorika, t. 1, Mir, M., 1990 | MR