On the growth of the number of long periodic solutions of differential equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 26 (1992) no. 2, pp. 29-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1992_26_2_a3,
     author = {E. G. Rosales},
     title = {On the growth of the number of long periodic solutions of differential equations},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {29--35},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1992_26_2_a3/}
}
TY  - JOUR
AU  - E. G. Rosales
TI  - On the growth of the number of long periodic solutions of differential equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1992
SP  - 29
EP  - 35
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1992_26_2_a3/
LA  - ru
ID  - FAA_1992_26_2_a3
ER  - 
%0 Journal Article
%A E. G. Rosales
%T On the growth of the number of long periodic solutions of differential equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1992
%P 29-35
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1992_26_2_a3/
%G ru
%F FAA_1992_26_2_a3
E. G. Rosales. On the growth of the number of long periodic solutions of differential equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 26 (1992) no. 2, pp. 29-35. http://geodesic.mathdoc.fr/item/FAA_1992_26_2_a3/

[1] Artin M., Mazur B., “On periodic points”, Ann. Math. Ser. 2, 81:1 (1965), 82–99 | DOI | MR | Zbl

[2] Arnold V.I., Dynamics of intersections. Analysis et ceters, Acad. Press, 1990 | MR | Zbl

[3] Rosales E., “O roste chisel periodicheskikh orbit dinamicheskikh sistem”, Funkts. analiz i ego pril., 25:4 (1991), 14–22 | MR

[4] Krech M., “Manifolds mith unique differentisble structure”, Topology, 23:2 (1974), 219–232 | DOI | MR

[5] Arnold B.I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[6] Anosov D.V., Arnold V.I., Itogi nauki i tekhniki. Sovr. prob. mat. Fundam. napravl., 1, 1985

[7] Milnoi J., Morse Theory, Princeton, New Jersey, 1973 | MR