On the growth of the number of long periodic solutions of differential equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 26 (1992) no. 2, pp. 29-35
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_1992_26_2_a3,
author = {E. G. Rosales},
title = {On the growth of the number of long periodic solutions of differential equations},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {29--35},
year = {1992},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1992_26_2_a3/}
}
E. G. Rosales. On the growth of the number of long periodic solutions of differential equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 26 (1992) no. 2, pp. 29-35. http://geodesic.mathdoc.fr/item/FAA_1992_26_2_a3/
[1] Artin M., Mazur B., “On periodic points”, Ann. Math. Ser. 2, 81:1 (1965), 82–99 | DOI | MR | Zbl
[2] Arnold V.I., Dynamics of intersections. Analysis et ceters, Acad. Press, 1990 | MR | Zbl
[3] Rosales E., “O roste chisel periodicheskikh orbit dinamicheskikh sistem”, Funkts. analiz i ego pril., 25:4 (1991), 14–22 | MR
[4] Krech M., “Manifolds mith unique differentisble structure”, Topology, 23:2 (1974), 219–232 | DOI | MR
[5] Arnold B.I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR
[6] Anosov D.V., Arnold V.I., Itogi nauki i tekhniki. Sovr. prob. mat. Fundam. napravl., 1, 1985
[7] Milnoi J., Morse Theory, Princeton, New Jersey, 1973 | MR