Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1992_26_2_a15, author = {L. A. Malozemov}, title = {On the spectrum of difference {Schr\"odinger} operator with a fractal potential}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {77--79}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {1992}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1992_26_2_a15/} }
TY - JOUR AU - L. A. Malozemov TI - On the spectrum of difference Schr\"odinger operator with a fractal potential JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1992 SP - 77 EP - 79 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1992_26_2_a15/ LA - ru ID - FAA_1992_26_2_a15 ER -
L. A. Malozemov. On the spectrum of difference Schr\"odinger operator with a fractal potential. Funkcionalʹnyj analiz i ego priloženiâ, Tome 26 (1992) no. 2, pp. 77-79. http://geodesic.mathdoc.fr/item/FAA_1992_26_2_a15/
[1] Mandelbroi V.V., The fractal geometry of nature, San Francisco, 1982 | MR
[2] Malozemov L.A., Kand. dissert., MGU, M., 1989
[3] Telcs A., Probab. Th. and Rel. Fields, 82 (1989), 435–449 | DOI | MR | Zbl
[4] Golitsyna A.G., Molchanov S.A., DAN SSSR, 294:6 (1987), 1302–1306 | MR | Zbl
[5] Jona-Lasinio G., Martinelli F., Scoppolo E., Ann. Inst. Henri Poincare, 42:1 (1985), 73–108 | MR | Zbl