Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1992_26_1_a3, author = {I. V. Savel'ev}, title = {De {Rham} theory of a simplicial complex}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {27--34}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {1992}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1992_26_1_a3/} }
I. V. Savel'ev. De Rham theory of a simplicial complex. Funkcionalʹnyj analiz i ego priloženiâ, Tome 26 (1992) no. 1, pp. 27-34. http://geodesic.mathdoc.fr/item/FAA_1992_26_1_a3/
[1] Gomotopicheskaya teoriya differentsialnykh form, Matematika. Novoe v zarubezhnoi nauke, Mir, M., 1981 | MR
[2] Bott R., Tu L.V., Differentsialnye formy v algebraicheskoi topologii, Nauka, M., 1989 | MR | Zbl
[3] Postnikov M.M., Gladkie mnogoobraziya, Nauka, M., 1987 | MR | Zbl
[4] De Ram Zh., Differentsiruemye mnogoobraziya, IL, M., 1956
[5] Uitni X., Geometricheskaya teoriya integrirovaniya, IL, M., I960
[6] Uorner F., Osnovy teorii gladkikh mnogoobrazii i grupp Li, Mir, M., 1987 | MR
[7] Grothendieck A., “On the de Rham cohomology of algebraic varieties”, Publ. Math. IHES, 29 (1966), 351–359 | DOI | MR | Zbl
[8] Hartshorne R., “On the de Rham cohomology of algebraic varieties”, PubL Math. IHES, 45 (1975), 6–99 | DOI | MR
[9] Quillen D., “Rational homotopy theory”, Ann. Math., 90 (1969), 205–295 | DOI | MR | Zbl
[10] Sullivan D., “Inside and ontside manifolds”, Proc. Intern. Congr. of Math., Vancouver, 1974, 201–207 | MR
[11] Sullivan D., “Infinitesimal computations in topology”, Publ Math. IHES, 47 (1977), 269–331 | DOI | MR | Zbl