Differential equations on the Prym theta function. a realness criterion for two-dimensional, finite-zone, potential Schr\"odinger operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 26 (1992) no. 1, pp. 17-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1992_26_1_a2,
     author = {S. M. Natanzon},
     title = {Differential equations on the {Prym} theta function. a realness criterion for two-dimensional, finite-zone, potential {Schr\"odinger} operators},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {17--26},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1992_26_1_a2/}
}
TY  - JOUR
AU  - S. M. Natanzon
TI  - Differential equations on the Prym theta function. a realness criterion for two-dimensional, finite-zone, potential Schr\"odinger operators
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1992
SP  - 17
EP  - 26
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1992_26_1_a2/
LA  - ru
ID  - FAA_1992_26_1_a2
ER  - 
%0 Journal Article
%A S. M. Natanzon
%T Differential equations on the Prym theta function. a realness criterion for two-dimensional, finite-zone, potential Schr\"odinger operators
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1992
%P 17-26
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1992_26_1_a2/
%G ru
%F FAA_1992_26_1_a2
S. M. Natanzon. Differential equations on the Prym theta function. a realness criterion for two-dimensional, finite-zone, potential Schr\"odinger operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 26 (1992) no. 1, pp. 17-26. http://geodesic.mathdoc.fr/item/FAA_1992_26_1_a2/

[1] Veselov A.P., Novikov S.P., “Konechnozonnye dvumernye potentsialnye operatory Shredingera. Yavnye formuly i evolyutsionnye uravneniya”, DAN SSSR, 279:1 (1984), 20–24 | MR | Zbl

[2] Veselov A.P., Novikov S.P., “Konechnozonnye dvumernye operatory Shredingera. Potentsialnye operatory”, DAN SSSR, 279:4 (1984), 784–788 | MR | Zbl

[3] Dubrovin B.A.,, “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl

[4] Dubrovin B.A., Krichever I.M., Novikov S.P., “Uravnenie Shredingera v magnitnom pole i rimanovy poverkhnosti”, DAN SSSR, 229:1 (1976), 15–18 | MR | Zbl

[5] Dubrovin B.A., Natanzon S.M., “Veschestvennye teta-funktsionalnye resheniya uravneniya Kadomtseva–Petviashvili”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 267–286 | MR | Zbl

[6] Krichever I.M., “Spektralnaya teoriya dvumernogo periodicheskogo operatora Shredingera”, UMN, 44:2 (1989), 121–184 | MR | Zbl

[7] Natanzon S.M., “Nesingulyarnye konechnozonnye dvumernye operatory Shredingera i primiany veschestvennykh krivykh”, Funkts. analiz i ego pril., 22:1 (1988), 79–80 | MR | Zbl

[8] Natanzon S.M., “Primiany veschestvennykh krivykh i ikh prilozheniya k effektivizatsii operatorov Shredingera”, Funkts. analiz i ego pril., 23:1 (1989), 41–56 | MR | Zbl

[9] Taimanov I.A., “Effektivizatsiya teta-funktsionalnykh formul dlya dvumernykh potentsialnykh operatorov Shredingera, konechnozonnykh na odnom urovne energii”, DAN SSSR, 285:5 (1985), 1067–1070 | MR | Zbl

[10] Taimanov I.A., “Mnogoobraziya Prima razvetvlennykh nakrytii i nelineinye uravneniya”, DAN SSSR, 181:7 (1980), 934–950 | MR

[11] Cherednik I.V., “Ob usloviyakh veschestvennosti v “konechnozonnom integrirovanii””, DAN SSSR, 252:5 (1980), 1104–1108 | MR | Zbl

[12] Date E.,Jimbo M., Kashiwara M., Miwa T., “Transformation groups for solution equations. IV. A new hierarchy of soliton equations of $KP$-type”, Physica, 48 (1982), 343–365 | MR