Phase-locking for mathieu type vector fields on a torus
Funkcionalʹnyj analiz i ego priloženiâ, Tome 26 (1992) no. 1, pp. 1-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1992_26_1_a0,
     author = {O. G. Galkin},
     title = {Phase-locking for mathieu type vector fields on a torus},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1992_26_1_a0/}
}
TY  - JOUR
AU  - O. G. Galkin
TI  - Phase-locking for mathieu type vector fields on a torus
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1992
SP  - 1
EP  - 8
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1992_26_1_a0/
LA  - ru
ID  - FAA_1992_26_1_a0
ER  - 
%0 Journal Article
%A O. G. Galkin
%T Phase-locking for mathieu type vector fields on a torus
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1992
%P 1-8
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1992_26_1_a0/
%G ru
%F FAA_1992_26_1_a0
O. G. Galkin. Phase-locking for mathieu type vector fields on a torus. Funkcionalʹnyj analiz i ego priloženiâ, Tome 26 (1992) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/FAA_1992_26_1_a0/

[1] Arnold V.I., “Zamechaniya o teorii vozmuschenii dlya zadach tipa Mate”, UMN, 38:4 (1983), 189–203 | MR

[2] Baesens S., Guckenheimer J., Kim S., MasKay R.S., Three coupled oscillators: modelocking, global bifurcations and toroidal chaos, Preprint, 1989 | MR

[3] Galkin O.G., “Resonance regions for Mathieu type dynamical systems on a torus”, Physica D, 39 (1989), 287–298 | DOI | MR | Zbl

[4] Kim S., Mackay R.S., Guckenheimer J., “Resonance regions for families of torus maps”, Nonlinearity, 2 (1989), 391–404 | DOI | MR | Zbl