@article{FAA_1991_25_4_a9,
author = {Yu. N. Bespalov and Yu. S. Samoilenko},
title = {Algebraic operators and pairs of self-adjoint operators connected by a polynomial relation},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {72--74},
year = {1991},
volume = {25},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a9/}
}
TY - JOUR AU - Yu. N. Bespalov AU - Yu. S. Samoilenko TI - Algebraic operators and pairs of self-adjoint operators connected by a polynomial relation JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1991 SP - 72 EP - 74 VL - 25 IS - 4 UR - http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a9/ LA - ru ID - FAA_1991_25_4_a9 ER -
%0 Journal Article %A Yu. N. Bespalov %A Yu. S. Samoilenko %T Algebraic operators and pairs of self-adjoint operators connected by a polynomial relation %J Funkcionalʹnyj analiz i ego priloženiâ %D 1991 %P 72-74 %V 25 %N 4 %U http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a9/ %G ru %F FAA_1991_25_4_a9
Yu. N. Bespalov; Yu. S. Samoilenko. Algebraic operators and pairs of self-adjoint operators connected by a polynomial relation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 4, pp. 72-74. http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a9/
[1] Ostrovskii V.L., Samoilenko Yu.S., Zap. nauch. sem. LOMI, 172, 1989, 121–129 | MR
[2] Ostrovskii V.L., Samoilenko Yu.S., Structure theorem for a pair of unbounded selfadjoint operators satisfying quadratic relation, Preprint Acad. Sci. Ukr. SSR. Inst. Mathematics: 91.4 | MR
[3] Newton I., Optics, 1704, 138–162
[4] Smogorzhevskii A.S., Stolova E.S., Spravochnik po teorii ploskikh krivykh tretego poryadka, Fizmatgiz, M., 1961 | MR
[5] Kruglyak S.A., Samoilenko Yu.S., Funktsion. analiz i ego pril., 14:1 (1980), 60–62 | MR | Zbl
[6] Khalmosh P.R., Matematika. Sb. perevodov inostr. statei, 15:5 (1971), 74–83
[7] Sunder V.S., Can. J. Math., XL:1 (1988), 38–51 | DOI | MR
[8] Kruglyak S.A., Predstavleniya i kvadratichnye formy, Kiev, 1979, 149–151 | MR | Zbl
[9] Halmos R.R., Trdms. Amer. Math. Soc., 144 (1969), 381–389 | DOI | MR | Zbl