A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds
Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 4, pp. 23-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1991_25_4_a2,
     author = {A. T. Fomenko},
     title = {A topological invariant which roughly classifies integrable strictly nondegenerate {Hamiltonians} on four-dimensional symplectic manifolds},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {23--35},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a2/}
}
TY  - JOUR
AU  - A. T. Fomenko
TI  - A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1991
SP  - 23
EP  - 35
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a2/
LA  - ru
ID  - FAA_1991_25_4_a2
ER  - 
%0 Journal Article
%A A. T. Fomenko
%T A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1991
%P 23-35
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a2/
%G ru
%F FAA_1991_25_4_a2
A. T. Fomenko. A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds. Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 4, pp. 23-35. http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a2/

[1] Novikov S.P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | DOI | MR | Zbl

[2] Arnold V.I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[3] Lerman L.M., Umanskii Ya.L., Struktura puassonovskogo deistviya na chetyrekhmernom simplekticheskom mnogoobrazii. Metody kachestvennoi teorii differentsialnykh uravnenii, Izd-vo Gorkovskogo un-ta, Gorkii, 1982, 3–19 | MR

[4] Lerman L.M., Umanskii Ya.L., Integriruemye gamiltonovy sistemy i puassonovskie deistviya. Metody kachestvennoi teorii differentsialnykh uravnenii, Izd-vo Gorkovskogo un-ta, Gorkii, 1984, 126–139 | MR

[5] Fomenko A.T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR, 50:6 (1986), 1276–1307 | MR | Zbl

[6] Fomenko A.T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funktsion. analiz i ego pril., 22:4 (1988), 38–51 | MR | Zbl

[7] Fomenko A.T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, UMN, 44:1 (1989), 145–173 | MR

[8] Fomenko A.T., Tsishang X., “Kriterii topologicheskoi ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR, 54:3 (1990), 546–575 | Zbl

[9] Bolsinov A.V., Matveev S.V., Fomenko A.T., “Topologicheskaya klassifikatsiya i uporyadochivanie po slozhnosti integriruekhmykh gamiltonovykh sistem differentsialnykh uravnenii s dvumya stepenyami svobody. Spisok vsekh integriruemykh sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR | Zbl

[10] Fomenko A.T., Tsishang X., “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR, 52:2 (1988), 378–407 | Zbl