Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1991_25_4_a2, author = {A. T. Fomenko}, title = {A topological invariant which roughly classifies integrable strictly nondegenerate {Hamiltonians} on four-dimensional symplectic manifolds}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {23--35}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {1991}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a2/} }
TY - JOUR AU - A. T. Fomenko TI - A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1991 SP - 23 EP - 35 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a2/ LA - ru ID - FAA_1991_25_4_a2 ER -
%0 Journal Article %A A. T. Fomenko %T A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds %J Funkcionalʹnyj analiz i ego priloženiâ %D 1991 %P 23-35 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a2/ %G ru %F FAA_1991_25_4_a2
A. T. Fomenko. A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds. Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 4, pp. 23-35. http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a2/
[1] Novikov S.P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | DOI | MR | Zbl
[2] Arnold V.I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR
[3] Lerman L.M., Umanskii Ya.L., Struktura puassonovskogo deistviya na chetyrekhmernom simplekticheskom mnogoobrazii. Metody kachestvennoi teorii differentsialnykh uravnenii, Izd-vo Gorkovskogo un-ta, Gorkii, 1982, 3–19 | MR
[4] Lerman L.M., Umanskii Ya.L., Integriruemye gamiltonovy sistemy i puassonovskie deistviya. Metody kachestvennoi teorii differentsialnykh uravnenii, Izd-vo Gorkovskogo un-ta, Gorkii, 1984, 126–139 | MR
[5] Fomenko A.T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR, 50:6 (1986), 1276–1307 | MR | Zbl
[6] Fomenko A.T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funktsion. analiz i ego pril., 22:4 (1988), 38–51 | MR | Zbl
[7] Fomenko A.T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, UMN, 44:1 (1989), 145–173 | MR
[8] Fomenko A.T., Tsishang X., “Kriterii topologicheskoi ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR, 54:3 (1990), 546–575 | Zbl
[9] Bolsinov A.V., Matveev S.V., Fomenko A.T., “Topologicheskaya klassifikatsiya i uporyadochivanie po slozhnosti integriruekhmykh gamiltonovykh sistem differentsialnykh uravnenii s dvumya stepenyami svobody. Spisok vsekh integriruemykh sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR | Zbl
[10] Fomenko A.T., Tsishang X., “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR, 52:2 (1988), 378–407 | Zbl