Growth of periodic orbits of dynamical systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 4, pp. 14-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1991_25_4_a1,
     author = {E. G. Rosales},
     title = {Growth of periodic orbits of dynamical systems},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {14--22},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a1/}
}
TY  - JOUR
AU  - E. G. Rosales
TI  - Growth of periodic orbits of dynamical systems
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1991
SP  - 14
EP  - 22
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a1/
LA  - ru
ID  - FAA_1991_25_4_a1
ER  - 
%0 Journal Article
%A E. G. Rosales
%T Growth of periodic orbits of dynamical systems
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1991
%P 14-22
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a1/
%G ru
%F FAA_1991_25_4_a1
E. G. Rosales. Growth of periodic orbits of dynamical systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 4, pp. 14-22. http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a1/

[1] Artin M., Mazur V., “On periodic points”, Ann. Math. Ser. 2, 81:1 (1965), 82–99 | DOI | MR | Zbl

[2] Arnold V.I., Dinamics of intersections. Analysis, et cetera, Acad. Press, 1990 | MR | Zbl

[3] Arnold V.I.,, “Malye znamenateli I. Ob otobrazheniyakh okruzhnosti v okruzhnost”, Izv. AN SSSR. Ser. matem., 25:1 (1961), 21–86 | MR

[4] Dubrovin V.A., Fomenko A.T., Novikov S.R., Modern Geometry – Methods and Applications, part II, Springer-Verlag, New York, 1985 | MR

[5] Arnold V.I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[6] Milnor J., Morse Theory, Princeton, New Jersey, 1973 | MR | Zbl