Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1991_25_4_a0, author = {S. N. Naboko}, title = {Structure of the singularities of operator functions with a positive imaginary part}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {1--13}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {1991}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a0/} }
TY - JOUR AU - S. N. Naboko TI - Structure of the singularities of operator functions with a positive imaginary part JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1991 SP - 1 EP - 13 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a0/ LA - ru ID - FAA_1991_25_4_a0 ER -
S. N. Naboko. Structure of the singularities of operator functions with a positive imaginary part. Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 4, pp. 1-13. http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a0/
[1] Atkinson F., Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968 | MR | Zbl
[2] Naboko S.N., “Absolyutno nepreryvnyi spektr nedissipativnogo operatora i funktsionalnaya model. 1”, Zap. nauch. semin. LOMI im. V.A. Steklova, 65, 1976, 90–102 | MR | Zbl
[3] Gokhberg I.Ts., Krein M.G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965
[4] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[5] Faddeev L.D., “O modeli Fridrikhsa v teorii vozmuschenii nepreryvnogo spektra”, Tr. MIAN im. V.A. Steklova AN SSSR, 73, 1964, 292–313 | MR | Zbl
[6] Faddeev L.D., Pavlov V.S., “Null sets of operator – valued functions with positive imaginary part”, Lecture Notes in Math., 1043, 1984, 124–128 | MR
[7] Pavlov B.C., Petras C.B., “O singulyarnom spektre slabo vozmuschennogo operatora umnozheniya”, Funktsion. analiz i ego pril., 4:2 (1970), 54–61 | MR | Zbl
[8] Naboko S.N., “Teoremy edinstvennosti dlya operator-funktsii s polozhitelnoi mnimoi chastyu i singulyarnyi spektr v samosopryazhennoi modeli Fridrikhsa”, DAN SSSR, 275 (1984), 1310–1313 | MR | Zbl
[9] Naboko S.N., “Uniqueness theorems for operator – valued functions with positive imaginary part, and the singular spectrum in the selfadjoint Friedrichs model”, Arkiv für Math., 25:1 (1987), 115–140 | DOI | MR | Zbl
[10] Pavlov B.S., “Teorema edinstvennosti dlya funktsii s polozhitelnoi mnimoi chastyu”, Problemy mat. fiz., 4, LGU, 1970, 118–124
[11] Petras S.V., “Teorema edinstvennosti dlya operatornykh $R$-funktsii”, Problemy mat. fiz., 7, LGU, 1974, 126–135 | MR
[12] Naboko S.N., “O strukture kornei operator-funktsii s polozhitelnoi mnimoi chastyu v klassakh $\sigma_p$”, DAN SSSR, 295 (1987), 538–541
[13] Mikityuk Ya.V., “Teoremy edinstvennosti dlya analiticheskikh operator-funktsii s neotritsatelnoi mnimoi chastyu”, Funktsion. analiz i ego pril., 22:1 (1988), 73–74 | MR | Zbl
[14] Naboko S.P., “Netangentsialnye granichnye znacheniya operatornykh $R$-funktsii v poluploskosti”, Algebra i analiz, 1:5 (1989), 197–222 | MR
[15] Sekefal'vi-Nad' B., Foiash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR
[16] Stein I., Singulyarnye integaly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR
[17] Benedek A., Calderon A., Panzone R., “Convolution operators on Banach space valued functions”, Proc. Nat. Acad. Sci. USA, 48 (1962), 356–364 | DOI | MR
[18] Schwartz J., “A remark on inequalities of Calderon–Zygmund type for vector-valued functions”, Comm. Pure and Appl. Math., 14 (1961), 785–799 | DOI | MR | Zbl
[19] Vourgain J., “Vector valued singular integrals and the $H^1$-BMO duality”, Israel Semin. Geom. Aspects Funct. Anal. S.I, 1984, XVI.I–XVI.23 | MR
[20] Naboko S.H., “Ob usloviyakh podobiya unitarnym i samosopryazhennym operatoram”, Funktsion. analiz i ego pril., 18:1 (1984), 16–27 | MR | Zbl
[21] Sadovnichii V.A., Teoriya operatorov, Izd-vo MGU, M., 1979 | MR | Zbl
[22] Naboko S.N., “O granichnykh znacheniyakh analiticheskikh operator-funktsii s polozhitelnoi mnimoi chastyu”, Zap. nauch. semin. LOMI im. V.A. Steklova, 157, 1987, 55–69 | MR | Zbl