Structure of the singularities of operator functions with a positive imaginary part
Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 4, pp. 1-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1991_25_4_a0,
     author = {S. N. Naboko},
     title = {Structure of the singularities of operator functions with a positive imaginary part},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a0/}
}
TY  - JOUR
AU  - S. N. Naboko
TI  - Structure of the singularities of operator functions with a positive imaginary part
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1991
SP  - 1
EP  - 13
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a0/
LA  - ru
ID  - FAA_1991_25_4_a0
ER  - 
%0 Journal Article
%A S. N. Naboko
%T Structure of the singularities of operator functions with a positive imaginary part
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1991
%P 1-13
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a0/
%G ru
%F FAA_1991_25_4_a0
S. N. Naboko. Structure of the singularities of operator functions with a positive imaginary part. Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 4, pp. 1-13. http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a0/

[1] Atkinson F., Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968 | MR | Zbl

[2] Naboko S.N., “Absolyutno nepreryvnyi spektr nedissipativnogo operatora i funktsionalnaya model. 1”, Zap. nauch. semin. LOMI im. V.A. Steklova, 65, 1976, 90–102 | MR | Zbl

[3] Gokhberg I.Ts., Krein M.G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[4] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[5] Faddeev L.D., “O modeli Fridrikhsa v teorii vozmuschenii nepreryvnogo spektra”, Tr. MIAN im. V.A. Steklova AN SSSR, 73, 1964, 292–313 | MR | Zbl

[6] Faddeev L.D., Pavlov V.S., “Null sets of operator – valued functions with positive imaginary part”, Lecture Notes in Math., 1043, 1984, 124–128 | MR

[7] Pavlov B.C., Petras C.B., “O singulyarnom spektre slabo vozmuschennogo operatora umnozheniya”, Funktsion. analiz i ego pril., 4:2 (1970), 54–61 | MR | Zbl

[8] Naboko S.N., “Teoremy edinstvennosti dlya operator-funktsii s polozhitelnoi mnimoi chastyu i singulyarnyi spektr v samosopryazhennoi modeli Fridrikhsa”, DAN SSSR, 275 (1984), 1310–1313 | MR | Zbl

[9] Naboko S.N., “Uniqueness theorems for operator – valued functions with positive imaginary part, and the singular spectrum in the selfadjoint Friedrichs model”, Arkiv für Math., 25:1 (1987), 115–140 | DOI | MR | Zbl

[10] Pavlov B.S., “Teorema edinstvennosti dlya funktsii s polozhitelnoi mnimoi chastyu”, Problemy mat. fiz., 4, LGU, 1970, 118–124

[11] Petras S.V., “Teorema edinstvennosti dlya operatornykh $R$-funktsii”, Problemy mat. fiz., 7, LGU, 1974, 126–135 | MR

[12] Naboko S.N., “O strukture kornei operator-funktsii s polozhitelnoi mnimoi chastyu v klassakh $\sigma_p$”, DAN SSSR, 295 (1987), 538–541

[13] Mikityuk Ya.V., “Teoremy edinstvennosti dlya analiticheskikh operator-funktsii s neotritsatelnoi mnimoi chastyu”, Funktsion. analiz i ego pril., 22:1 (1988), 73–74 | MR | Zbl

[14] Naboko S.P., “Netangentsialnye granichnye znacheniya operatornykh $R$-funktsii v poluploskosti”, Algebra i analiz, 1:5 (1989), 197–222 | MR

[15] Sekefal'vi-Nad' B., Foiash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[16] Stein I., Singulyarnye integaly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[17] Benedek A., Calderon A., Panzone R., “Convolution operators on Banach space valued functions”, Proc. Nat. Acad. Sci. USA, 48 (1962), 356–364 | DOI | MR

[18] Schwartz J., “A remark on inequalities of Calderon–Zygmund type for vector-valued functions”, Comm. Pure and Appl. Math., 14 (1961), 785–799 | DOI | MR | Zbl

[19] Vourgain J., “Vector valued singular integrals and the $H^1$-BMO duality”, Israel Semin. Geom. Aspects Funct. Anal. S.I, 1984, XVI.I–XVI.23 | MR

[20] Naboko S.H., “Ob usloviyakh podobiya unitarnym i samosopryazhennym operatoram”, Funktsion. analiz i ego pril., 18:1 (1984), 16–27 | MR | Zbl

[21] Sadovnichii V.A., Teoriya operatorov, Izd-vo MGU, M., 1979 | MR | Zbl

[22] Naboko S.N., “O granichnykh znacheniyakh analiticheskikh operator-funktsii s polozhitelnoi mnimoi chastyu”, Zap. nauch. semin. LOMI im. V.A. Steklova, 157, 1987, 55–69 | MR | Zbl