Geometry of five-dimensional complexes of two-dimensional planes in projective space
Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 3, pp. 73-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1991_25_3_a8,
     author = {I. V. Bubyakin},
     title = {Geometry of five-dimensional complexes of two-dimensional planes in projective space},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {73--76},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1991_25_3_a8/}
}
TY  - JOUR
AU  - I. V. Bubyakin
TI  - Geometry of five-dimensional complexes of two-dimensional planes in projective space
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1991
SP  - 73
EP  - 76
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1991_25_3_a8/
LA  - ru
ID  - FAA_1991_25_3_a8
ER  - 
%0 Journal Article
%A I. V. Bubyakin
%T Geometry of five-dimensional complexes of two-dimensional planes in projective space
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1991
%P 73-76
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1991_25_3_a8/
%G ru
%F FAA_1991_25_3_a8
I. V. Bubyakin. Geometry of five-dimensional complexes of two-dimensional planes in projective space. Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 3, pp. 73-76. http://geodesic.mathdoc.fr/item/FAA_1991_25_3_a8/

[1] Khodzh V., Nido D., Metody algebraicheskoi geometrii, t. 1, 2, M., 1954

[2] Akivis M.A., Tenso, 38 (1982), 273–282 | Zbl

[3] Akivis M.A., Sib. mat. zhurn., 23:6 (1982), 6–15 | MR | Zbl

[4] Room T.G., The geometry of determinantal loci, Cambridge, 1938