Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1991_25_3_a2, author = {Z. I. Leibenzon}, title = {Simple proof of {Macdonald's} identities for the series {A}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {19--23}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {1991}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1991_25_3_a2/} }
Z. I. Leibenzon. Simple proof of Macdonald's identities for the series A. Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 3, pp. 19-23. http://geodesic.mathdoc.fr/item/FAA_1991_25_3_a2/
[1] Macdonald I.G., “Affine root systems and Dedekind's $\eta$-function”, Invent Math., 15 (1972), 91–143 | DOI | MR | Zbl
[2] Kats V.G., “Beskonechnomernye algebry Li i $\eta$-funktsiya Dedekinda”, Funktsion. analiz i ego pril., 8:1 (1974), 77–78 | MR | Zbl
[3] Garland N., Lepowsky J., “Lie algebra homology and the Macdonald-Kac formulas”, Invent. Math., 34 (1976), 37–76 | DOI | MR | Zbl
[4] Lepowsky J., Milne S., “Lie algebraic approaches to classical partition identities”, Adv. in Math., 29 (1978), 15–59 | DOI | MR | Zbl
[5] Lepowsky J., “Generalized Verma modules, loop space cohomology and Macdonald-type identifies”, Ann. Sci. Ecole Norm. Sup., 12 (1979), 169–234 | DOI | MR | Zbl
[6] Fuks D.B., Kogomologii beskonechnomernykh algebr Li, Nauka, M., 1984 | MR
[7] Milne S.S., “An Elementary Proof of the Macdonald identities for $A_l^{(1)}$”, Adv. in Math., 57 (1985), 34–70 | DOI | MR | Zbl
[8] Leibenzon 3.L., “Prostoi kombinatornyi metod dlya dokazatelstva tozhdestva Yakobi i ego obobschenii”, Funktsion. analiz i ego pril., 20:1 (1986), 77–78 | MR | Zbl