@article{FAA_1991_25_3_a0,
author = {N. A. Bobylev and Yu. M. Burman},
title = {Morse lemma for functionals of variational calculus},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {1--11},
year = {1991},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1991_25_3_a0/}
}
N. A. Bobylev; Yu. M. Burman. Morse lemma for functionals of variational calculus. Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 3, pp. 1-11. http://geodesic.mathdoc.fr/item/FAA_1991_25_3_a0/
[1] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR
[2] Arnold V.I., Varchenko A.N., Gusein-Zade S.M., Osobennosti differentsiruemykh otobrazhenii, t. 1, Nauka, M., 1982 | MR
[3] Novikov S.P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | DOI | MR | Zbl
[4] Fomenko A.T., “Mnogomernye variatsionnye zadachi v topologii ekstremalei”, UMN, 36:6 (1981), 105–135 | MR | Zbl
[5] Beeson M.J., Tromba A.J., “The cusp catastrophe of Tonie and bifurcations of minimal surfaces”, Manusc. Math., 46 (1984), 273–308 | DOI | MR | Zbl
[6] Skrypnik V.I., Nelineinye ellipticheskie uravneniya vysshego poryadka, Naukova dumka, Kiev, 1973 | MR
[7] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR
[8] Daletskii Yu.L., Krein M.G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR
[9] Koshelev A.I., “Apriornye otsenki v $L_p$ i obobschennye resheniya ellipticheskikh uravnenii i sistem”, UMN, 13:4 (1958), 29–88 | MR
[10] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, t. 4, Mir, M., 1982 | MR