Intersection theory on the moduli space of curves
Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 2, pp. 50-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1991_25_2_a4,
     author = {M. L. Kontsevich},
     title = {Intersection theory on the moduli space of curves},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {50--57},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1991_25_2_a4/}
}
TY  - JOUR
AU  - M. L. Kontsevich
TI  - Intersection theory on the moduli space of curves
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1991
SP  - 50
EP  - 57
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1991_25_2_a4/
LA  - ru
ID  - FAA_1991_25_2_a4
ER  - 
%0 Journal Article
%A M. L. Kontsevich
%T Intersection theory on the moduli space of curves
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1991
%P 50-57
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1991_25_2_a4/
%G ru
%F FAA_1991_25_2_a4
M. L. Kontsevich. Intersection theory on the moduli space of curves. Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 2, pp. 50-57. http://geodesic.mathdoc.fr/item/FAA_1991_25_2_a4/

[1] Witten E., Two dimensional gravity and intersection theory of Moduli space, Princeton preprint. 1990. IASSNS-HEPP 90/45 | MR

[2] Sigal G., Vilson Dzh., “Gruppy petel i uravneniya tipa KdF”, Pressli E., Sigal Dzh., Gruppy petel, Mir, M., 1990 | MR

[3] Mumford D., Towards enumerative geometry of the moduli space of curves, Arithmetic and Geometry, eds. M. Artin, J. Tate, Birkhäuser, 1983 | MR

[4] Strebel K., Quadratic differentials, Springer-Verlag, Berlin, 1984 | MR

[5] Sonoda H., Zwiebach B., “Closed string field theory loops with symmetric factorizable quadratic differentials”, Nuclear Physics, B331 (1990), 592–628 | DOI | MR

[6] Bessis D., Itzykson C, Zuber J.-B., “Quantum Field Theory Techniques in Graphical Enumeration”, Adv. Appl. Math., 1 (1980), 109–157 | DOI | MR | Zbl