Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1991_25_1_a4, author = {N. I. Chernov}, title = {Topological entropy and periodic points of two-dimensional hyperbolic billiards}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {50--57}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {1991}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1991_25_1_a4/} }
TY - JOUR AU - N. I. Chernov TI - Topological entropy and periodic points of two-dimensional hyperbolic billiards JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1991 SP - 50 EP - 57 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1991_25_1_a4/ LA - ru ID - FAA_1991_25_1_a4 ER -
N. I. Chernov. Topological entropy and periodic points of two-dimensional hyperbolic billiards. Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 1, pp. 50-57. http://geodesic.mathdoc.fr/item/FAA_1991_25_1_a4/
[1] Sinai Ya.G., “Dinamicheskie sistemy s uprugimi otrazheniyami. Ergodicheskie svoistva rasseivayuschikh billiardov”, UMN, 25:2 (1970), 141–192 | MR | Zbl
[2] Bunimovich L.A., Sinai Ya.G., “Ob osnovnoi teoreme teorii rasseivayuschikh billiardov”, Mat. sb., 90:3 (1973), 415–431 | Zbl
[3] Bunimovich L.A., “O billiardakh, blizkikh k rasseivayuschim”, Mat. sb., 94:1 (1974), 49–73 | MR | Zbl
[4] Bunimovich L.A., “On the ergodic properties of nowhere dispersing billiards”, Comm. Math. Phys., 65:3 (1979), 295–312 | DOI | MR | Zbl
[5] Bunimovich L.A., Sinai Ya.G., Chernov N.I., “Markovskie razbieniya dlya dvumernykh giperbolicheskikh billiardov”, UMN, 45:3 (1990), 97–134 | MR | Zbl
[6] Dinamicheskie sistemy, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 2, VINITI, M., 1985
[7] Katok A., Strelcyn J.M., Smooth Maps with Singulariti invariant manifolds, entropy and billiards, Lect. Notes Math., 1222, Springer Verlag, 1987 | MR
[8] Alekseev V.M., Yakobson M.V., “Simvolicheskaya dinamika i giperbolicheskie dinamicheskrkhe sistemy”, Bouen R., Metody simvolicheskoi dinamiki, Mir, M., 1979, 196–240
[9] Боуэн P., Методы символической динамики, Мир, М., 1979 | DOI | MR | MR
[10] Pesin Ya. B., Pitskel B.S., “Topologicheskoe davlenie i variatsionnyi printsip dlya nekompaktnykh mnozhestv”, Funktsion. analiz i ego pril., 18:4 (1984), 50–63 | MR | Zbl
[11] Gurevich B.M., “Topologicheskaya entropiya schetnoi tsepi Markova”, DAN SSSR, 187:4 (1969), 715–718 | Zbl
[12] Salama I., “Topological entropy and recurrence of countable chains”, Pacific J. Math., 132:2 (1988), 325–341 | DOI | MR
[13] Stojanov L., “An estimate from above of the number of periodic orbits for semi-dispersed billiards”, Comm. Math. Phys., 124:2 (1989), 217–227 | DOI | MR | Zbl
[14] Katok A., “Lyapunov exponents, entropy and periodic orbits of diffeomorphisms”, Publ. Math. IHES, 51 (1980), 137–173 | DOI | MR | Zbl
[15] Ikawa M., “Decay of solutions of Ihe wave equation in the exterior of several convex bodies”, Ann. Inst. Fourier, 38 (1988), 113–146 | DOI | MR | Zbl
[16] Morita T., The symbolic representation of billiards without boundary condition, Preprint, Tokyo Inst. Technol., Tokyo, 1989 | MR
[17] Chernov N.I. , Fedyanin V.K., Shvedovsky V.A., Calculation of the billiards $h$-entropy in the closed plane region with the scattering boundary, Preprint / E17-83-236, JINR, Dubna, 1983
[18] Katok A., “The groth rate for the number of singular and periodic orbits for a polygonal billiard”, Comm. Math. Phys., 111:1 (1987), 151–160 | DOI | MR | Zbl