The step-decay problem for the Korteweg-de Vries-Burgers equation
Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 1, pp. 21-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1991_25_1_a2,
     author = {P. I. Naumkin and I. A. Shishmarev},
     title = {The step-decay problem for the {Korteweg-de} {Vries-Burgers} equation},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {21--32},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1991_25_1_a2/}
}
TY  - JOUR
AU  - P. I. Naumkin
AU  - I. A. Shishmarev
TI  - The step-decay problem for the Korteweg-de Vries-Burgers equation
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1991
SP  - 21
EP  - 32
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1991_25_1_a2/
LA  - ru
ID  - FAA_1991_25_1_a2
ER  - 
%0 Journal Article
%A P. I. Naumkin
%A I. A. Shishmarev
%T The step-decay problem for the Korteweg-de Vries-Burgers equation
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1991
%P 21-32
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1991_25_1_a2/
%G ru
%F FAA_1991_25_1_a2
P. I. Naumkin; I. A. Shishmarev. The step-decay problem for the Korteweg-de Vries-Burgers equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 1, pp. 21-32. http://geodesic.mathdoc.fr/item/FAA_1991_25_1_a2/

[1] Johson R.S., “A nonlinear equation incorporating damping and dispersion”, J. Fluid. Mech., 42 (1970), 49–60 | DOI | MR

[2] Grighton D.G., “Model equations of nonlinear acoustics”, Ann. Rev. Fluid Mech., 11 (1979), 11–33 | DOI

[3] Grad H., Hu P.W., “Unified shock profile in a plasma”, Phys. Fluids, 10 (1967), 2596–2602 | DOI

[4] Naumkin P.I., Shishmarev I.A., “Asimptotika reshenii uravneniya Uizema pri bolshikh vremenakh”, Mat. modelirovanie, 2:3 (1990), 75–88 | MR | Zbl

[5] Naumkin P.I., Shishmarev I.A., “Asimptotika pri $t\to\infty$ reshenii obobschennogo uravneniya Kolmogorova–Petrovskogo–Piskunova”, Mat. modelirovanie, 1:6 (1989), 109–125 | MR | Zbl

[6] Naumkin P.I., Shishmarev I.A., “Ob asimptotike pri $t\to\infty$ reshenii nelineinykh evolyutsionnykh uravnenii s dissipatsiei”, Mat. zametki, 1989, no. 4, 118–121 | MR | Zbl

[7] Jeffrey A., Hu S., “Exact solutions to the Korteweg–de Vries–Burgers equation”, Wave Motion, 11 (1989), 559–564 | DOI | MR | Zbl

[8] Bona J.L., Schonbeck M.E., “Travelling wave solutions to the Korteweg–de Vries–Burgers equation”, Proc. Roy. Soc. Edinburg, 101A (1985), 207–226 | DOI | MR

[9] Avilov V.V., Krichever I.M., Novikov S.P., “Evolyutsiya uitemovskoi zony v teorii Kortevega–de Frisa”, DAN SSSR, 295:2 (1987), 345–349 | MR | Zbl

[10] Avilov V.V., Novikov S.P., “Evolyutsiya uitemovskoi zony v teorii KdF”, DAN SSSR, 294:2 (1987), 325–329 | MR

[11] Kolmogorov A.N., Petrovskii I.G., Piskunov N.S., “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byul. MGU. Mat. i mekh., 1 (1937), 1–26

[12] Rozhdestvenskii B.L., Yanenko N.N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR | Zbl