$(\pm)$-regular factorization and the best minorant
Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 1, pp. 72-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1991_25_1_a10,
     author = {{\DJ}o Cong Khanh},
     title = {$(\pm)$-regular factorization and the best minorant},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {72--74},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1991_25_1_a10/}
}
TY  - JOUR
AU  - Đo Cong Khanh
TI  - $(\pm)$-regular factorization and the best minorant
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1991
SP  - 72
EP  - 74
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1991_25_1_a10/
LA  - ru
ID  - FAA_1991_25_1_a10
ER  - 
%0 Journal Article
%A Đo Cong Khanh
%T $(\pm)$-regular factorization and the best minorant
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1991
%P 72-74
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1991_25_1_a10/
%G ru
%F FAA_1991_25_1_a10
Đo Cong Khanh. $(\pm)$-regular factorization and the best minorant. Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 1, pp. 72-74. http://geodesic.mathdoc.fr/item/FAA_1991_25_1_a10/

[1] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[2] Arov D.Z., L. Operator Theory, 1979, 95–126 | MR | Zbl

[3] Brodskii M.S., UMN, 33:4 (1978), 141–168 | MR | Zbl