When is the multiplicity of a weight equal to 1?
Funkcionalʹnyj analiz i ego priloženiâ, Tome 24 (1990) no. 4, pp. 1-13
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_1990_24_4_a0,
author = {A. D. Berenshtein and A. V. Zelevinskii},
title = {When is the multiplicity of a weight equal to 1?},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {1--13},
year = {1990},
volume = {24},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1990_24_4_a0/}
}
A. D. Berenshtein; A. V. Zelevinskii. When is the multiplicity of a weight equal to 1?. Funkcionalʹnyj analiz i ego priloženiâ, Tome 24 (1990) no. 4, pp. 1-13. http://geodesic.mathdoc.fr/item/FAA_1990_24_4_a0/
[1] Burbaki N., Gruppy i algebry Li, Gl. 4–6, Mir, M., 1972 | MR | Zbl
[2] Burbaki N., Gruppy i algebry Li, Gl. 7, 8, Mir, M., 1978 | MR
[3] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR
[4] Makdonald I., Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR
[5] Berenstein A.D., Zelevinsky A.V., “Tensor product multipHcities and convex polytopes in partition space”, Journal Geom. Phys, 6 (1990) | MR
[6] Lusztig G., “Singularities, character formulas, and a $q$-analog of weight multiplicities”, Asterisque, 101–102 (1983), 208–227 | MR