When is the multiplicity of a weight equal to 1?
Funkcionalʹnyj analiz i ego priloženiâ, Tome 24 (1990) no. 4, pp. 1-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1990_24_4_a0,
     author = {A. D. Berenshtein and A. V. Zelevinskii},
     title = {When is the multiplicity of a weight equal to 1?},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1990_24_4_a0/}
}
TY  - JOUR
AU  - A. D. Berenshtein
AU  - A. V. Zelevinskii
TI  - When is the multiplicity of a weight equal to 1?
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1990
SP  - 1
EP  - 13
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1990_24_4_a0/
LA  - ru
ID  - FAA_1990_24_4_a0
ER  - 
%0 Journal Article
%A A. D. Berenshtein
%A A. V. Zelevinskii
%T When is the multiplicity of a weight equal to 1?
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1990
%P 1-13
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1990_24_4_a0/
%G ru
%F FAA_1990_24_4_a0
A. D. Berenshtein; A. V. Zelevinskii. When is the multiplicity of a weight equal to 1?. Funkcionalʹnyj analiz i ego priloženiâ, Tome 24 (1990) no. 4, pp. 1-13. http://geodesic.mathdoc.fr/item/FAA_1990_24_4_a0/

[1] Burbaki N., Gruppy i algebry Li, Gl. 4–6, Mir, M., 1972 | MR | Zbl

[2] Burbaki N., Gruppy i algebry Li, Gl. 7, 8, Mir, M., 1978 | MR

[3] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR

[4] Makdonald I., Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR

[5] Berenstein A.D., Zelevinsky A.V., “Tensor product multipHcities and convex polytopes in partition space”, Journal Geom. Phys, 6 (1990) | MR

[6] Lusztig G., “Singularities, character formulas, and a $q$-analog of weight multiplicities”, Asterisque, 101–102 (1983), 208–227 | MR