An infinitely smooth compact convex hypersurface with a shadow whose boundary is not twice-differentiable
Funkcionalʹnyj analiz i ego priloženiâ, Tome 23 (1989) no. 3, pp. 86-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1989_23_3_a20,
     author = {V. D. Sedykh},
     title = {An infinitely smooth compact convex hypersurface with a shadow whose boundary is not twice-differentiable},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {86--87},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1989_23_3_a20/}
}
TY  - JOUR
AU  - V. D. Sedykh
TI  - An infinitely smooth compact convex hypersurface with a shadow whose boundary is not twice-differentiable
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1989
SP  - 86
EP  - 87
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1989_23_3_a20/
LA  - ru
ID  - FAA_1989_23_3_a20
ER  - 
%0 Journal Article
%A V. D. Sedykh
%T An infinitely smooth compact convex hypersurface with a shadow whose boundary is not twice-differentiable
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1989
%P 86-87
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1989_23_3_a20/
%G ru
%F FAA_1989_23_3_a20
V. D. Sedykh. An infinitely smooth compact convex hypersurface with a shadow whose boundary is not twice-differentiable. Funkcionalʹnyj analiz i ego priloženiâ, Tome 23 (1989) no. 3, pp. 86-87. http://geodesic.mathdoc.fr/item/FAA_1989_23_3_a20/

[1] Kiselman C.O., J. London Math. Soc., 33:1 (1986), 101–109 | DOI | MR | Zbl