Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1989_23_3_a17, author = {A. N. Panov}, title = {Irreducible representations of maximal dimension of simple {Lie} algrbras over a field of positive characteristic}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {80--81}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {1989}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1989_23_3_a17/} }
TY - JOUR AU - A. N. Panov TI - Irreducible representations of maximal dimension of simple Lie algrbras over a field of positive characteristic JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1989 SP - 80 EP - 81 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1989_23_3_a17/ LA - ru ID - FAA_1989_23_3_a17 ER -
%0 Journal Article %A A. N. Panov %T Irreducible representations of maximal dimension of simple Lie algrbras over a field of positive characteristic %J Funkcionalʹnyj analiz i ego priloženiâ %D 1989 %P 80-81 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_1989_23_3_a17/ %G ru %F FAA_1989_23_3_a17
A. N. Panov. Irreducible representations of maximal dimension of simple Lie algrbras over a field of positive characteristic. Funkcionalʹnyj analiz i ego priloženiâ, Tome 23 (1989) no. 3, pp. 80-81. http://geodesic.mathdoc.fr/item/FAA_1989_23_3_a17/
[1] Kats V.G., Veisfeiler B.Yu., Funktsion. analiz i ego pril., 5:2 (1971), 28–36 | MR | Zbl
[2] Zassenhaus H., Proc. Glasgow Math. Assoc., 2:1 (1954), 1–36 | DOI | MR | Zbl
[3] Milner L.A., Funktsion. analiz i ego pril., 14:2 (1980), 67–68 | MR
[4] Seminar po algebraicheskim gruppam, Mir, M., 1973 | MR
[5] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR
[6] Panov A.N., Mat. sbornik, 128(170):1(9) (1985), 21–34 | MR | Zbl