Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1989_23_2_a3, author = {A. G. Kamalian and A. B. Nersesyan}, title = {Smooth transition type integral operators}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {32--39}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {1989}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1989_23_2_a3/} }
A. G. Kamalian; A. B. Nersesyan. Smooth transition type integral operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 23 (1989) no. 2, pp. 32-39. http://geodesic.mathdoc.fr/item/FAA_1989_23_2_a3/
[1] Gakhov F.D., Cherskii Yu.I., Uravneniya tipa svertki, Nauka, M., 1978 | MR | Zbl
[2] Gokhberg I.Ts., Krein M.G., “Sistemy integralnykh uravnenii na polupryamoi s yadrami, zavisyaschimi ot raznosti argumentov”, UMN, 13:2 (1958), 3–72 | MR
[3] Gokhberg I.Ts., Feldman I.A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971 | MR
[4] Voevodin V.V., Tyrtyshnikov E.E., “Vychisleniya s teplitsevymi matritsami”, Vychislitelnye protsessy i sistemy, Nauka, M., 1983, 124–266 | MR
[5] Heinig G., Rost K., “Algebraic Methods for Toepliz – like Matrices and Operators”, Mathematical Research, Band 19, Akademie-Verlag, Berlin, 1984 | MR | Zbl
[6] Sobolev V.V., “Problema Milna dlya neodnorodnoi atmosfery”, DAN SSSR, 239:3 (1978), 558–561 | MR
[7] Zhidkov E.P., Khoromskii B.N., Mnogosetochnyi algoritm reshenii chastichnoi problemy na sobstvennye znacheniya dlya odnogo klassa matrits tipa teplitsevykh, Preprint OIYaI. R11-84-740, Dubna, 1984 | MR
[8] Rakovschik L.S., “K teorii uravnenii tipa svertki”, UMN, 18:4 (1963), 171–177 | MR
[9] Karapetyants N.K., Samko S.G., “Ob indekse nekotorykh klassov integralnykh operatorov”, Izv. AN ArmSSR. Ser. mat., 8:1 (1973), 26–40 | MR
[10] Antonevich A.B., “Ob operatorakh tipa svertki s ostsilliruyuschimi koeffitsientami”, Izv. AN BSSR. Ser. fiz.-mat. nauk, 1976, no. 2, 42–46 | Zbl
[11] Duduchava R.V., “Integralnye uravneniya svertki s razryvnymi predsimvolami, singulyarnye integralnye uravneniya s nepodvizhnymi osobennostyami i ikh prilozhenie k zadacham mekhaniki”, Tr. Tbilissk. mat. in-ta, 60 (1978), 3–135
[12] Cherskii Yu.I., “Normalno razlozhimoe uravnenie plavnogo perekhoda”, DAN SSSR, 190:1 (1970), 57–60
[13] Fan Tang Da, “Ob odnom integralnom uravnenii tipa plavnogo perekhoda”, Dif. uravneniya, 8:6 (1972), 1058–1067 | MR | Zbl
[14] Fan Tang Da, “Ob odnoi kraevoi zadache Gazemana dlya poluploskosti i integralnykh uravneniyakh tipa svertki s analiticheskimi yadrami”, Izv. vuzov. Mat., 1973, no. 10, 73–82 | MR | Zbl
[15] Khermander L., Otsenki dlya operatorov, invariantnykh otnositelno sdviga, IL, M., 1962
[16] Beitmen G., Erdeii A., Tablitsa integralnykh preobrazovanii, t. 1, Nauka, M., 1969
[17] Krupnik N.Ya., Banakhovy algebry s simvolom i singulyarnye integralnye operatory, Shtiintsa, Kishinev, 1984 | MR | Zbl
[18] Simonenko I.B., Chin Ngok Min, Lokalnyi metod v teorii odnomernykh singulyarnykh uravnenii s kusochno-nepreryvnymi koeffitsientami. Neterovost, Rostov-na-Donu, 1986 | MR | Zbl
[19] Gokhberg I.Ts., Krupnik N.Ya., Vvedenie v teoriyu odnomernykh singulyarnykh integralnykh operatorov, Shtiintsa, Kishinev, 1973 | MR
[20] Bart H., Gohberg I. , Kaashoek M.A., “The coupling method for solving integral equations”, Operator theory. Advances and Applications, 12, Birkhauser Verlag, Basel–Boston–Stuttgart, 1984, 39–73 | MR