Spectral theory of a pencil of skew-symmetric differential operators of third order on $S^1$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 23 (1989) no. 2, pp. 1-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1989_23_2_a0,
     author = {I. M. Gel'fand and I. S. Zakharevich},
     title = {Spectral theory of a pencil of skew-symmetric differential operators of third order on $S^1$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--11},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1989_23_2_a0/}
}
TY  - JOUR
AU  - I. M. Gel'fand
AU  - I. S. Zakharevich
TI  - Spectral theory of a pencil of skew-symmetric differential operators of third order on $S^1$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1989
SP  - 1
EP  - 11
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1989_23_2_a0/
LA  - ru
ID  - FAA_1989_23_2_a0
ER  - 
%0 Journal Article
%A I. M. Gel'fand
%A I. S. Zakharevich
%T Spectral theory of a pencil of skew-symmetric differential operators of third order on $S^1$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1989
%P 1-11
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1989_23_2_a0/
%G ru
%F FAA_1989_23_2_a0
I. M. Gel'fand; I. S. Zakharevich. Spectral theory of a pencil of skew-symmetric differential operators of third order on $S^1$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 23 (1989) no. 2, pp. 1-11. http://geodesic.mathdoc.fr/item/FAA_1989_23_2_a0/

[1] Gantmakher F.R., Teoriya matrits, Nauka, M., 1986 | MR

[2] Ganning R., Rossi X., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR

[3] McKean H.P., Trubowitz C., “Hill's Operator and Hyperelliptic Function Theory in the Presence of Infinitly Many Branch Points”, Comm. Pure Appl. Math., 29:1 (1976), 143–226 | DOI | MR | Zbl