Spectral theory of a pencil of skew-symmetric differential operators of third order on $S^1$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 23 (1989) no. 2, pp. 1-11
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_1989_23_2_a0,
author = {I. M. Gel'fand and I. S. Zakharevich},
title = {Spectral theory of a pencil of skew-symmetric differential operators of third order on $S^1$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {1--11},
year = {1989},
volume = {23},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1989_23_2_a0/}
}
TY - JOUR AU - I. M. Gel'fand AU - I. S. Zakharevich TI - Spectral theory of a pencil of skew-symmetric differential operators of third order on $S^1$ JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1989 SP - 1 EP - 11 VL - 23 IS - 2 UR - http://geodesic.mathdoc.fr/item/FAA_1989_23_2_a0/ LA - ru ID - FAA_1989_23_2_a0 ER -
%0 Journal Article %A I. M. Gel'fand %A I. S. Zakharevich %T Spectral theory of a pencil of skew-symmetric differential operators of third order on $S^1$ %J Funkcionalʹnyj analiz i ego priloženiâ %D 1989 %P 1-11 %V 23 %N 2 %U http://geodesic.mathdoc.fr/item/FAA_1989_23_2_a0/ %G ru %F FAA_1989_23_2_a0
I. M. Gel'fand; I. S. Zakharevich. Spectral theory of a pencil of skew-symmetric differential operators of third order on $S^1$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 23 (1989) no. 2, pp. 1-11. http://geodesic.mathdoc.fr/item/FAA_1989_23_2_a0/
[1] Gantmakher F.R., Teoriya matrits, Nauka, M., 1986 | MR
[2] Ganning R., Rossi X., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR
[3] McKean H.P., Trubowitz C., “Hill's Operator and Hyperelliptic Function Theory in the Presence of Infinitly Many Branch Points”, Comm. Pure Appl. Math., 29:1 (1976), 143–226 | DOI | MR | Zbl