Method of holomorphic extensions in the theory of unitary representations of infinite-dimensional classical groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 22 (1988) no. 4, pp. 23-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1988_22_4_a2,
     author = {G. I. Olshanskii},
     title = {Method of holomorphic extensions in the theory of unitary representations of infinite-dimensional classical groups},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {23--37},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1988_22_4_a2/}
}
TY  - JOUR
AU  - G. I. Olshanskii
TI  - Method of holomorphic extensions in the theory of unitary representations of infinite-dimensional classical groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1988
SP  - 23
EP  - 37
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1988_22_4_a2/
LA  - ru
ID  - FAA_1988_22_4_a2
ER  - 
%0 Journal Article
%A G. I. Olshanskii
%T Method of holomorphic extensions in the theory of unitary representations of infinite-dimensional classical groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1988
%P 23-37
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1988_22_4_a2/
%G ru
%F FAA_1988_22_4_a2
G. I. Olshanskii. Method of holomorphic extensions in the theory of unitary representations of infinite-dimensional classical groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 22 (1988) no. 4, pp. 23-37. http://geodesic.mathdoc.fr/item/FAA_1988_22_4_a2/

[1] Burbaki N., Gruppy i algebry Li, Gl. I–III, Mir, M., 1976 | MR

[2] Vershik A.M., Kerov S.V., “Kharaktery i faktor-predstavleniya beskonechnoi unitarnoi gruppy”, DAN SSSR, 267:2 (1982), 272–276 | MR | Zbl

[3] Vershik A.M., “Metagonalnaya i metaplekticheskaya beskonechnomernye gruppy. 1. Obschie ponyatiya i metagonalnaya gruppa”, Differentsialnaya geometriya, gruppy Li i mekhanika. V. Zap. nauchn. semin. LOMI, 123, Nauka, L., 1983, 3–35 | MR | Zbl

[4] Gokhberg I.Ts., Krein M.G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[5] Kirillov A.A., “Predstavleniya beskonechnomernoi unitarnoi gruppy”, DAN SSSR, 212:2 (1973), 288–290 | MR | Zbl

[6] Kolomytsev V.I., Samoilenko Yu.S., “O neprivodimykh predstavleniyakh induktivnykh predelov grupp”, Ukr. mat. zh., 29 (1977), 526–531 | MR | Zbl

[7] Neretin Yu.A., “Pochti invariantnye struktury i konstruktsii unitarnykh predstavlenii gruppy diffeomorfizmov okruzhnosti”, DAN SSSR, 294:1 (1987), 37–41 | MR | Zbl

[8] Neretin Yu.A., “Unitarnye predstavleniya gruppy diffeomorfizmov $p$-adicheskoi proektivnoi pryamoi”, Funktsion. analiz i ego pril., 18:4 (1984), 92–93 | MR | Zbl

[9] Nessonov N.I., “Polnaya klassifikatsiya predstavlenii $GL(\infty)$, soderzhaschikh edinichnoe predstavlenie unitarnoi podgruppy”, Mat. sb., 130:2 (1986), 131–150 | MR | Zbl

[10] Olshanskii G.I., “Konstruktsiya unitarnykh predstavlenii beskonechnomernykh klassicheskikh grupp”, DAN SSSR, 250:2 (1980), 284–288 | MR

[11] Olshanskii G.I., “Unitarnye predstavleniya beskonechnomernykh par $(G,K)$ i formalizm R. Khau”, DAN SSSR, 269:1 (1983), 33–36 | MR

[12] Olshanskii G.I., “Unitarnye predstavleniya beskonechnomernykh klassicheskikh grupp $U(r,\infty)$, $SO_0(r,\infty)$, $Sp(r,\infty)$ i sootvetstvuyuschikh grupp dvizhenii”, Funktsion. analiz i ego pril., 12:3 (1978), 32–44 | MR

[13] Olshanskii G.I., “Beskonechnomernye klassicheskie gruppy konechnogo $\mathbf R$-ranga: opisanie predstavlenii i asimptoticheskaya teoriya”, Funktsion. analiz i ego pril., 18:1 (1984), 28–42 | MR

[14] Olshanskii G.I., “Unitarnye predstavleniya gruppy $SO_0(\infty,\infty)$ kak predely unitarnykh predstavlenii grupp $SO_0(n,\infty)$ pri $n\to\infty$”, Funktsion. analiz i ego pril., 20:4 (1986), 46–57 | MR

[15] Olshanskii G.I., “Opisanie unitarnykh predstavlenii so starshim vesom dlya grupp $U(p,q)\tilde{\hphantom a}$”, Funktsion. analiz i ego pril., 14:3 (1980), 32–44 | MR

[16] Bart H., Gohberg I., Kaashoek M.A., Minimal factorization of matrix and operator functions, Birkhauser, Basel, 1979 | MR | Zbl

[17] Guichardet A., Symmetric Hilbert spaces and related topics, Springer, Berlin, 1972 | MR | Zbl

[18] Howe R., Remarks on classical invariant theory, Yale University preprint | MR

[19] Kashiwara M., Vergne M., “On the Segal–Shale–Weil representations and harmonic polynomials”, Invent. Math., 44:1 (1978), 1–47 | DOI | MR | Zbl

[20] Krämer M., “Some remarks suggesting an interesting theory of harmonic functions on $SU(2n+l)/Sp(n)$ and $SO(2n+1)/U(n)$”, Arch. Math., 33:1 (1979), 76–79 | DOI | MR | Zbl

[21] Olshansky G.I., “Unitary representations of the infinite symmetric group: a semigroup approach”, Representations of Lie groups and Lie algebras, Akademiai Kiado, Budapest, 1985, 181–197 | MR

[22] Segal I.E., “The structure of a class of representations of a unitary group on a Hilbert space”, Proc. Amer. Meth. Soc., 88:1 (1958), 197–203 | MR

[23] Sternberg S., “Some recent results on the metaplectic representation”, Lect. Notes in Phys., 79, 1978, 117–144 | DOI | MR

[24] Voiculescu D., “Representations factorielles de type $II_1$ de $U(\infty)$”, J. Math. pures et appl., 55:1 (1976), 1–20 | MR | Zbl

[25] Dooley A.H., Rice J.W., “On contractions of semisimple Lie groups”, Trans. Amer. Math. Soc., 289, no. l, 1985, 185–202 | DOI | MR | Zbl