Effective sufficient conditions for the solvability of the inverse problem of monodromy theory for systems of linear ordinary differential equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 22 (1988) no. 3, pp. 25-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1988_22_3_a2,
     author = {A. R. Its and V. Yu. Novokshenov},
     title = {Effective sufficient conditions for the solvability of the inverse problem of monodromy theory for systems of linear ordinary differential equations},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {25--36},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1988_22_3_a2/}
}
TY  - JOUR
AU  - A. R. Its
AU  - V. Yu. Novokshenov
TI  - Effective sufficient conditions for the solvability of the inverse problem of monodromy theory for systems of linear ordinary differential equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1988
SP  - 25
EP  - 36
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1988_22_3_a2/
LA  - ru
ID  - FAA_1988_22_3_a2
ER  - 
%0 Journal Article
%A A. R. Its
%A V. Yu. Novokshenov
%T Effective sufficient conditions for the solvability of the inverse problem of monodromy theory for systems of linear ordinary differential equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1988
%P 25-36
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1988_22_3_a2/
%G ru
%F FAA_1988_22_3_a2
A. R. Its; V. Yu. Novokshenov. Effective sufficient conditions for the solvability of the inverse problem of monodromy theory for systems of linear ordinary differential equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 22 (1988) no. 3, pp. 25-36. http://geodesic.mathdoc.fr/item/FAA_1988_22_3_a2/

[1] Fuchs L., Gesammelte mathematishe Werke, Bd. I–III, Berlin, 1904 | Zbl

[2] Birkhoff G.D., “Singular points of ordinary linear differential equations”, Trans. Amer. Math. Soc., 10, 1909, 436–470 | DOI | MR | Zbl

[3] Birkhoff G.D., “The generalized Riemann problem for linear differential equations and the allied problems for linear difference and $q$-difference equations”, Proc. Amer. Acad. Arts and Sciences, 49:9 (1913) | DOI | Zbl

[4] Arnold V.I., Ilyashenko Yu.S., “Obyknovennye differenschshlnye uravneniya”, Dinamicheskie sistemy – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 1, VINITI, M., 1985, 7–146 | MR | Zbl

[5] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[6] Problemy Gilberta, Nauka, M., 1969 | MR

[7] Plemelj J., Problems in the sense of Riemann and Klein, Inter. Publ., New York–Sydney, 1964 | MR | Zbl

[8] Forster O., Rimanovy poverkhnosti, Mir, M., 1980 | MR

[9] Schlesinger L., “Uber eine Klasse von Differentialsystemen beliebigex. Ordnung mit festen kritischen Punklen”, J. Heine Angew. Math., 141 (1912), 96–145 | DOI | MR | Zbl

[10] Flaschka H., Newell A., “Monodromy and spectral preserving deformations”, Comm. Math. Phys., 76 (1980), 67–116 | DOI | MR

[11] Jimbo M.J., Ueno K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, I, II. Preprint RIMS-319, 327, Kioto, 1980 | MR

[12] Fedoryuk M.B., “Izomonodromnye deformatsii uravnenii s irregulyarnoi osobennostyu”, Diff. uravneniya, 22:6 (1986), 961–967 | MR | Zbl

[13] Ains E.L., Obyknovennye differentsialnye uravneniya, ONTI, Kharkov, 1939

[14] Its A.B., Novokshenov V.Yu., “Isomodromic deformation method in the theory of Painleve equations”, Lect. Notes in Math., 1191, 1986 | DOI | MR | Zbl

[15] Kapaev A.A., Novokshenov V.Yu., “Dvuparametricheskoe semeistvo veschestvennykh reshenii vtorogo uravneniya Penleve”, DAN SSSR, 290:3 (1986), 590–594 | MR

[16] Novokshenov V.Yu., Suleimanov B.I., “Metod izomonodromnykh deformatsii i asimptotika vtorogo i tretego transtsendentov Penleve”, UMN, 39:4 (1984), 113–115

[17] Focas A.S., Ablowitz M.J., “On the initial value Probbem of the second Painleve transcendent”, Comm. Math. Phys., 91 (1983), 381–403 | DOI | MR

[18] Lappo-Danilevskii I.A.,, Primenenie funktsii ot matrits k teorii lineinykh sistem obyknovennykh differentsialnykh uravnenii, GITTL, M., 1957

[19] Erugin N.P., Problema Rimana, Nauka i tekhnika, Minsk, 1982 | MR | Zbl

[20] Abdullaev A.S., “K teorii vtorogo uravneniya Penleve”, DAN, 273:5 (1983), 1033–1036 | MR | Zbl

[21] Hasting S.P., McLeod J.B., “A boundary value problem associated with the second Painleve transcendent and the KdV equation”, Arch. Rat. Mech. Anal., 73:1 (1980), 31–51 | DOI | MR | Zbl

[22] Sibuya Y., “Stokes phenomena”, Bull. Amer. Math. Soc., 83:5 (1977), 1075–1077 | DOI | MR | Zbl