Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1988_22_3_a2, author = {A. R. Its and V. Yu. Novokshenov}, title = {Effective sufficient conditions for the solvability of the inverse problem of monodromy theory for systems of linear ordinary differential equations}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {25--36}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {1988}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1988_22_3_a2/} }
TY - JOUR AU - A. R. Its AU - V. Yu. Novokshenov TI - Effective sufficient conditions for the solvability of the inverse problem of monodromy theory for systems of linear ordinary differential equations JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1988 SP - 25 EP - 36 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1988_22_3_a2/ LA - ru ID - FAA_1988_22_3_a2 ER -
%0 Journal Article %A A. R. Its %A V. Yu. Novokshenov %T Effective sufficient conditions for the solvability of the inverse problem of monodromy theory for systems of linear ordinary differential equations %J Funkcionalʹnyj analiz i ego priloženiâ %D 1988 %P 25-36 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_1988_22_3_a2/ %G ru %F FAA_1988_22_3_a2
A. R. Its; V. Yu. Novokshenov. Effective sufficient conditions for the solvability of the inverse problem of monodromy theory for systems of linear ordinary differential equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 22 (1988) no. 3, pp. 25-36. http://geodesic.mathdoc.fr/item/FAA_1988_22_3_a2/
[1] Fuchs L., Gesammelte mathematishe Werke, Bd. I–III, Berlin, 1904 | Zbl
[2] Birkhoff G.D., “Singular points of ordinary linear differential equations”, Trans. Amer. Math. Soc., 10, 1909, 436–470 | DOI | MR | Zbl
[3] Birkhoff G.D., “The generalized Riemann problem for linear differential equations and the allied problems for linear difference and $q$-difference equations”, Proc. Amer. Acad. Arts and Sciences, 49:9 (1913) | DOI | Zbl
[4] Arnold V.I., Ilyashenko Yu.S., “Obyknovennye differenschshlnye uravneniya”, Dinamicheskie sistemy – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 1, VINITI, M., 1985, 7–146 | MR | Zbl
[5] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968
[6] Problemy Gilberta, Nauka, M., 1969 | MR
[7] Plemelj J., Problems in the sense of Riemann and Klein, Inter. Publ., New York–Sydney, 1964 | MR | Zbl
[8] Forster O., Rimanovy poverkhnosti, Mir, M., 1980 | MR
[9] Schlesinger L., “Uber eine Klasse von Differentialsystemen beliebigex. Ordnung mit festen kritischen Punklen”, J. Heine Angew. Math., 141 (1912), 96–145 | DOI | MR | Zbl
[10] Flaschka H., Newell A., “Monodromy and spectral preserving deformations”, Comm. Math. Phys., 76 (1980), 67–116 | DOI | MR
[11] Jimbo M.J., Ueno K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, I, II. Preprint RIMS-319, 327, Kioto, 1980 | MR
[12] Fedoryuk M.B., “Izomonodromnye deformatsii uravnenii s irregulyarnoi osobennostyu”, Diff. uravneniya, 22:6 (1986), 961–967 | MR | Zbl
[13] Ains E.L., Obyknovennye differentsialnye uravneniya, ONTI, Kharkov, 1939
[14] Its A.B., Novokshenov V.Yu., “Isomodromic deformation method in the theory of Painleve equations”, Lect. Notes in Math., 1191, 1986 | DOI | MR | Zbl
[15] Kapaev A.A., Novokshenov V.Yu., “Dvuparametricheskoe semeistvo veschestvennykh reshenii vtorogo uravneniya Penleve”, DAN SSSR, 290:3 (1986), 590–594 | MR
[16] Novokshenov V.Yu., Suleimanov B.I., “Metod izomonodromnykh deformatsii i asimptotika vtorogo i tretego transtsendentov Penleve”, UMN, 39:4 (1984), 113–115
[17] Focas A.S., Ablowitz M.J., “On the initial value Probbem of the second Painleve transcendent”, Comm. Math. Phys., 91 (1983), 381–403 | DOI | MR
[18] Lappo-Danilevskii I.A.,, Primenenie funktsii ot matrits k teorii lineinykh sistem obyknovennykh differentsialnykh uravnenii, GITTL, M., 1957
[19] Erugin N.P., Problema Rimana, Nauka i tekhnika, Minsk, 1982 | MR | Zbl
[20] Abdullaev A.S., “K teorii vtorogo uravneniya Penleve”, DAN, 273:5 (1983), 1033–1036 | MR | Zbl
[21] Hasting S.P., McLeod J.B., “A boundary value problem associated with the second Painleve transcendent and the KdV equation”, Arch. Rat. Mech. Anal., 73:1 (1980), 31–51 | DOI | MR | Zbl
[22] Sibuya Y., “Stokes phenomena”, Bull. Amer. Math. Soc., 83:5 (1977), 1075–1077 | DOI | MR | Zbl