Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1988_22_2_a2, author = {V. V. Goryunov}, title = {Projection and vector fields, tangent to the discriminant of a complete intersection}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {26--37}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {1988}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1988_22_2_a2/} }
TY - JOUR AU - V. V. Goryunov TI - Projection and vector fields, tangent to the discriminant of a complete intersection JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1988 SP - 26 EP - 37 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1988_22_2_a2/ LA - ru ID - FAA_1988_22_2_a2 ER -
V. V. Goryunov. Projection and vector fields, tangent to the discriminant of a complete intersection. Funkcionalʹnyj analiz i ego priloženiâ, Tome 22 (1988) no. 2, pp. 26-37. http://geodesic.mathdoc.fr/item/FAA_1988_22_2_a2/
[1] Arnold V.I., “Kriticheskie tochki funktsii na mnogoobrazii s kraem, prostye gruppy Li $B_k$, $C_k$, $F_4$ i osobennosti evolyut”, UMN, 33:5 (1978), 91–105 | MR
[2] Arnold V.I., Varchenko A.N., Gusein-Zade S.M., Osobennosti differentsiruemykh otobrazhenii, T. 1, Nauka, M., 1982 ; Т. 2, Наука, М., 1984 | MR
[3] Goryunov V.V., “Geometriya bifurkatsionnykh diagramm prostykh proektirovanii na pryamuyu”, Funktsion. analiz i ego pril., 15:2 (1981), 1–8 | MR | Zbl
[4] Goryunov V.V., “Osobennosti proektirovanii polnykh peresechenii”, (Itogi nauki i tekhn. VINITI AN SSSR), Sovremennye problemy matematiki, 22, VINITI, M., 1983, 167–206 | MR
[5] Zakalyukin V.M., “Perestroiki volnovykh frontov, zavisyaschikh ot odnogo parametra”, Funktsion. analiz i ego pril., 11:3 (1977), 76–77 | MR | Zbl
[6] Lyashko O.V., “Geometriya bifurkatsionnykh diagramm”, (Itogi nauki i tekhn. VINITI AN SSSR), Sovremennye problemy matematiki, 22, VINITI, M., 1983, 94–129 | MR
[7] Arnol'd V.I., “Wave front evolution and equivariant Morse lemma”, Comm. Pure Appl. Math., 29:6 (1976), 557–582 | DOI | MR
[8] Bruce J.W., “Vector fields on discriminants and bifurcation varieties”, Bull. London Math. Soc., 17, part 3 (1985), 257–263 | DOI | MR
[9] Golubitski M., Schaeffer D.G., “Singularities and groups in bifurcation theory”, V. 1, Applied Mathematical Sciences, 51, Springer-Verlag, New York; Berlin; Heidelberg; Tokyo, 1985 | DOI | MR
[10] Greuel G.-M., “Dualität in der lokalen Kogomologie isolierter Singularitäten”, Math. Ann., 250 (1980), 157–173 | DOI | MR | Zbl
[11] Giusti M., Classification des singularitees isolees d'intersections completes, Preprint, Ecole Polytechnique, 1977 | MR
[12] Looijenga E., “The complement of the bifurcation variety of a simple singularity”, Invent. Math., 23:2 (1974), 105–116 | DOI | MR | Zbl
[13] Looijenga E., “Isolated singular points on complete intersections”, London Math. Soc. Lecture Notes 77, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl
[14] Terao H., “The bifurcation set and logarithmic vector fields”, Math. Ann., 263 (1983), 313–321 | DOI | MR | Zbl