Hamiltonian differential operators and contact geometry
Funkcionalʹnyj analiz i ego priloženiâ, Tome 21 (1987) no. 3, pp. 53-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1987_21_3_a4,
     author = {O. I. Mokhov},
     title = {Hamiltonian differential operators and contact geometry},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {53--60},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1987_21_3_a4/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - Hamiltonian differential operators and contact geometry
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1987
SP  - 53
EP  - 60
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1987_21_3_a4/
LA  - ru
ID  - FAA_1987_21_3_a4
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T Hamiltonian differential operators and contact geometry
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1987
%P 53-60
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1987_21_3_a4/
%G ru
%F FAA_1987_21_3_a4
O. I. Mokhov. Hamiltonian differential operators and contact geometry. Funkcionalʹnyj analiz i ego priloženiâ, Tome 21 (1987) no. 3, pp. 53-60. http://geodesic.mathdoc.fr/item/FAA_1987_21_3_a4/

[1] Gelfand I.M., Dorfman I.Ya., “Gamiltonovy operatory i svyazannye s nimi algebraicheskie struktury”, Funktsion. analiz i ego pril., 13:4 (1979), 13–30 | MR

[2] Astashov A.M., “Normalnye formy gamiltonovykh operatorov v teorii polya”, DAN SSSR, 270:5 (1983), 1033–1037 | MR | Zbl

[3] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl

[4] Mokhov O.I., “Lokalnye skobki Puassona tretego poryadka”, UMN, 40:5 (1985), 257–258 | MR | Zbl

[5] Dubrovin B.A., Novikov S.P., “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[6] Kupershmidt B.A., Wilson G., “Modifying Lax equations and the second Hamiltonian structure”, Invent. Math., 62:3 (1981), 403–436 | DOI | MR

[7] Focas A.S., Fuchssteiner B., “On the structure of simplectic operators and hereditary symmetries”, Lett. al Nuovo Cim., 28:8 (1980), 299–303 | DOI | MR

[8] Ibragimov H.X., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[9] Vinogradov A.M., “Gamiltonovy struktury v teorii polya”, DAN SSSR, 241:1 (1978), 18–21 | MR | Zbl

[10] Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., “Korteweg– de Vries equation and generalizations. VI Methods for exact solutions”, Comm. Pure Appl. Math., 27 (1974), 97–133 | DOI | MR | Zbl

[11] Lax P.D., “Almost periodic solutions of the $KdV$ equation”, SIAM review, 18:3 (1976), 351–375 | DOI | MR | Zbl

[12] Gelfand I.M., Dorfman I.Ya., “Integriruemye uravneniya KdF – G. Dima”, Sovremennye problemy matematicheskoi fiziki i vychislitelnoi matematiki, Nauka, M., 1982, 102–112 | MR