Determinantal varieties and symmetric polynomials
Funkcionalʹnyj analiz i ego priloženiâ, Tome 21 (1987) no. 3, pp. 89-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1987_21_3_a15,
     author = {P. Pragacz},
     title = {Determinantal varieties and symmetric polynomials},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {89--90},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1987_21_3_a15/}
}
TY  - JOUR
AU  - P. Pragacz
TI  - Determinantal varieties and symmetric polynomials
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1987
SP  - 89
EP  - 90
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1987_21_3_a15/
LA  - ru
ID  - FAA_1987_21_3_a15
ER  - 
%0 Journal Article
%A P. Pragacz
%T Determinantal varieties and symmetric polynomials
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1987
%P 89-90
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1987_21_3_a15/
%G ru
%F FAA_1987_21_3_a15
P. Pragacz. Determinantal varieties and symmetric polynomials. Funkcionalʹnyj analiz i ego priloženiâ, Tome 21 (1987) no. 3, pp. 89-90. http://geodesic.mathdoc.fr/item/FAA_1987_21_3_a15/

[1] Fulton W., Intersection theory, Springer-Verlag, 1984 | MR | Zbl

[2] Harris J., Tu L., Invent. Math., 75 (1984), 467–478 | DOI | MR

[3] Jozefiak T., Lascoux A., Pragacz P., Izv. AH SSSR, 45:3 (1981), 662–673 | MR | Zbl

[4] Makdonald I., Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR

[5] Porteus I.R., Lect. Notes in Math., 192, 1971, 286–307 | DOI

[6] Pragacz P., Degeneracy loci and symmetric functions I, II, Preprints IM PAN, Warsaw, 1986 | MR | Zbl

[7] Pragacz P., A note on the elimination theory I, II, Preprints IM PAN, Warsaw, 1986 | MR | Zbl