Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1987_21_2_a3, author = {A. A. Kirillov}, title = {K\"ahler structures on $K$-orbits of the group of diffeomorphisms of a circle}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {42--45}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {1987}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1987_21_2_a3/} }
TY - JOUR AU - A. A. Kirillov TI - K\"ahler structures on $K$-orbits of the group of diffeomorphisms of a circle JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1987 SP - 42 EP - 45 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1987_21_2_a3/ LA - ru ID - FAA_1987_21_2_a3 ER -
A. A. Kirillov. K\"ahler structures on $K$-orbits of the group of diffeomorphisms of a circle. Funkcionalʹnyj analiz i ego priloženiâ, Tome 21 (1987) no. 2, pp. 42-45. http://geodesic.mathdoc.fr/item/FAA_1987_21_2_a3/
[1] Kirillov A.A., Golenischeva-Kutuzova M.I., Geometriya momentov dlya gruppy diffeomorfizmov, Preprint, no. 101, In-ta prikl. mat. im. M.V. Keldysha AN SSSR, 1986 | MR | Zbl
[2] Kirillov A.A., “Infinite dimensional Lie groups; their orbits, invariants and representations”, Lect. Notes in Math., no. 970, Springer, 1982, 101–123 | DOI | MR
[3] Kirillov A.A., “Metod orbit i predstavleniya beskonechnomernykh grupp Li”, Geometriya i topologiya v globalnykh nelineinykh zadachakh, Voronezh, 1984, 49–67 | MR | Zbl
[4] Kobayasi M., Nomidzu K., Osnovy differentsialnoi geometrii, Ch. 2, Nauka, M., 1981 | MR
[5] Goluzin G.M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, M.- L., 1959 | MR
[6] Ahlfors L., Bers L., “Riemann' mapping theorem for variable metrics”, Ann. of Math., 72:2 (1960), 385–404 | DOI | MR | Zbl
[7] Lavrentev M.A., “Sur une classe des representations continues”, Mat. sb., 42 (1935), 407–424
[8] Lavrentev M.A., Shabat B.V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR