New generalizations of Poincar\'e's geometric theorem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 21 (1987) no. 2, pp. 16-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1987_21_2_a1,
     author = {V. L. Ginzburg},
     title = {New generalizations of {Poincar\'e's} geometric theorem},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {16--22},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1987_21_2_a1/}
}
TY  - JOUR
AU  - V. L. Ginzburg
TI  - New generalizations of Poincar\'e's geometric theorem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1987
SP  - 16
EP  - 22
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1987_21_2_a1/
LA  - ru
ID  - FAA_1987_21_2_a1
ER  - 
%0 Journal Article
%A V. L. Ginzburg
%T New generalizations of Poincar\'e's geometric theorem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1987
%P 16-22
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1987_21_2_a1/
%G ru
%F FAA_1987_21_2_a1
V. L. Ginzburg. New generalizations of Poincar\'e's geometric theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 21 (1987) no. 2, pp. 16-22. http://geodesic.mathdoc.fr/item/FAA_1987_21_2_a1/

[1] Arnold V.I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR

[2] Arnold V.I., “Neskolko zamechanii o potokakh lineinykh elementov i reperov”, DAN SSSR, 138:2 (1961), 255–257 | MR

[3] Arnold V.I., Osobennosti differentsiruemykh otobrazhenii, T. 1, Nauka, M., 1982 | MR

[4] Arnold V.I., Givental A.B., “Simplekticheskaya geometriya”, Itogi nauki i tekhniki. Sovremennye problemy matematrzhi. Fundamentalnye napravleniya, 1, VINITI AN SSSR, M., 1985, 7–140 | MR | Zbl

[5] Banyaga A., “Sur la structure du groupe des diffeomorphismes qui preservenvt une forme symplectique”, Comment. Math. Helv., 53:2 (1978), 174–227 | DOI | MR | Zbl

[6] Banyaga A., The geometry of the flux homomorphism, Prepublications of the Institut Fourier, Grenoble, 1984 | MR

[7] Conley C.C., Zehnder E., “The Birkhoff–Lewis fixed point theorem and a conjecture of V.I. Arnold”, Inv. Math., 73:1 (1983), 33–49 | DOI | MR | Zbl

[8] Kozlov V.V., “Variatsionnoe ischislenie v tselom i klassicheskaya mekhanika”, UMN, 40:2 (1985), 33–60 | MR | Zbl

[9] Moser J., “On the volume elements on a manifold”, Trans. Amer. Math. Soc., 120, no. 2, 1965, 286–294 | DOI | MR | Zbl

[10] Nikishin H.A., “O nepodvizhnykh tochkakh diffeomorfizmov dvumernoi sfery, sokhranyayuschikh orientirovannuyu ploschad”, Funktsion. analiz i ego pril., 8:1 (1974), 84–85 | MR | Zbl

[11] Novikov S.P., Taimanov I.A., “Periodicheskie ekstremali mnogoznachnykh ili ne vsyudu polozhitelnykh funktsionalov”, DAN SSSR, 274:1 (1984), 26–28 | MR | Zbl

[12] Sikorav J.-C., Points fixes d'un symplectomorphism homologue, à l'identite, Preprint F-91405-ORSAY cedex, Universite de Paris, 1984 | MR

[13] Simon C., “A bound for fixed-point index for an area preserving map with application to mechanics”, Inv. Math., 26:2 (1974), 187–200 | DOI | MR | Zbl

[14] Taimanov I.A., “Printsip perekidyvaniya tsiklov v teorii Morsa–Novikova”, DAN SSSR, 268:1 (1983), 46–50 | MR | Zbl