Lagrangian imbeddings of surfaces and unfolded Whitney umbrella
Funkcionalʹnyj analiz i ego priloženiâ, Tome 20 (1986) no. 3, pp. 35-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1986_20_3_a2,
     author = {A. B. Givental'},
     title = {Lagrangian imbeddings of surfaces and unfolded {Whitney} umbrella},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {35--41},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1986_20_3_a2/}
}
TY  - JOUR
AU  - A. B. Givental'
TI  - Lagrangian imbeddings of surfaces and unfolded Whitney umbrella
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1986
SP  - 35
EP  - 41
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1986_20_3_a2/
LA  - ru
ID  - FAA_1986_20_3_a2
ER  - 
%0 Journal Article
%A A. B. Givental'
%T Lagrangian imbeddings of surfaces and unfolded Whitney umbrella
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1986
%P 35-41
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1986_20_3_a2/
%G ru
%F FAA_1986_20_3_a2
A. B. Givental'. Lagrangian imbeddings of surfaces and unfolded Whitney umbrella. Funkcionalʹnyj analiz i ego priloženiâ, Tome 20 (1986) no. 3, pp. 35-41. http://geodesic.mathdoc.fr/item/FAA_1986_20_3_a2/

[1] Arnold V.I., “O kharakteristicheskom klasse, vkhodyaschem v uslovie kvantovanii”, Funktsion. analiz i ego pril., 1:1 (1967), 1–14 | MR

[2] Arnold V.I., “Osobennosti sistem luchei”, UMN, 38:2 (1983), 77–147 | MR

[3] Arnold V.I., Varchenko A.N., Gusein-Zade S.M., Osobennosti differentsiruemykh otobrazhenii, 1, Nauka, M., 1984 | MR

[4] Scherbak O.P., “Proektivno dvoistvennye prostranstvennye krivye i lezhandrovy osobennosti”, Trudy Tbilis. un-ta, 232–233:13–14 (1982), 280–336 | MR

[5] Gromov M., “Pseudo holomorphic curves in symplectic manifolds”, Invent. math., 82:5 (1985), 307–347 | DOI | MR | Zbl

[6] Whitney H., “The general type of singularities of a set of $2n-1$ smooth functions of $n$ variables”, Duke Journ. of Math., 45, ser. 2 (1944), 220–293 | MR