Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1986_20_2_a4, author = {V. Yu. Novokshenov}, title = {Movable poles of the solutions of {Painleve's} equation of the third kind and their relation with mathieu functions}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {38--49}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {1986}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1986_20_2_a4/} }
TY - JOUR AU - V. Yu. Novokshenov TI - Movable poles of the solutions of Painleve's equation of the third kind and their relation with mathieu functions JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1986 SP - 38 EP - 49 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1986_20_2_a4/ LA - ru ID - FAA_1986_20_2_a4 ER -
%0 Journal Article %A V. Yu. Novokshenov %T Movable poles of the solutions of Painleve's equation of the third kind and their relation with mathieu functions %J Funkcionalʹnyj analiz i ego priloženiâ %D 1986 %P 38-49 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_1986_20_2_a4/ %G ru %F FAA_1986_20_2_a4
V. Yu. Novokshenov. Movable poles of the solutions of Painleve's equation of the third kind and their relation with mathieu functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 20 (1986) no. 2, pp. 38-49. http://geodesic.mathdoc.fr/item/FAA_1986_20_2_a4/
[1] McCoy B.M., Tracy C.A., Wu T.T., “Painleve functions of the third type”, J. Math. Phys., 18:5 (1977), 1058–1092 | DOI | MR | Zbl
[2] Lukashevich N.A., “K teorii tretego uravneniya Penleve”, Dif. uravneniya, 3:11 (1967), 1913–1923 | MR | Zbl
[3] Fuchs R., “Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei Endlichen gelegene wesentlich singularen Stellen”, Math. Ann., 63 (1907), 301–321 | DOI | MR | Zbl
[4] Gaier R., “Sur les équations differentielles du troisieme ordre dont I'integrale générale est uniforme et surune classe d'equationes d'ordre superieur dont Tintegrale générale ases point critique”, Ann. Sci. Ec. Norm. Super., 29 (1912), 1–126 | DOI | MR
[5] Flaschka H., Newell A., “Monodromy-and spectrum-preserving deformations”, Comm. Math. Phys., 76 (1980), 65–116 | DOI | MR | Zbl
[6] Sato M,, Dzimbo M., Miva T., Golonomnye kvantovye polya, Mir, M., 1983, 304 pp. | MR
[7] Its A.R., “«Izomonodromnye» resheniya uravnenii nulevoi krivizny”, Izv. AN SSSR, ser. mat., 49:3 (1985), 530–565 | MR | Zbl
[8] Novokshenov V.Yu., “Metod izomonodromnoi deformatsii i asimptotika tretego transtsendenta Penleve”, Funktsion. analiz i ego pril., 18:3 (1984), 90–91 | MR | Zbl
[9] Novokshenov V.Yu., “Ob asimptotike obschego veschestvennogo resheniya uravneniya Penleve tretego tipa”, DAN SSSR, 283:5 (1985), 1161–1165 | MR | Zbl
[10] Hinton F.L., “Stokes multipliers for a class of ordinary differential equations”, J. Math. Phys., 20:10 (1979), 2036–2046 | DOI | MR | Zbl
[11] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, t. 3, Nauka, M., 1967, 300 pp. | MR
[12] Kheding Dzh., Vvedenie v metod fazovykh integralov (metod VKB), Mir, M., 1965, 237 pp.
[13] Fedoryuk M.V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983, 352 pp. | MR | Zbl