Singular vectors in Verma modules over Kac--Moody algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 20 (1986) no. 2, pp. 25-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1986_20_2_a3,
     author = {F. G. Malikov and B. L. Feigin and D. B. Fuchs},
     title = {Singular vectors in {Verma} modules over {Kac--Moody} algebras},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {25--37},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1986_20_2_a3/}
}
TY  - JOUR
AU  - F. G. Malikov
AU  - B. L. Feigin
AU  - D. B. Fuchs
TI  - Singular vectors in Verma modules over Kac--Moody algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1986
SP  - 25
EP  - 37
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1986_20_2_a3/
LA  - ru
ID  - FAA_1986_20_2_a3
ER  - 
%0 Journal Article
%A F. G. Malikov
%A B. L. Feigin
%A D. B. Fuchs
%T Singular vectors in Verma modules over Kac--Moody algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1986
%P 25-37
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1986_20_2_a3/
%G ru
%F FAA_1986_20_2_a3
F. G. Malikov; B. L. Feigin; D. B. Fuchs. Singular vectors in Verma modules over Kac--Moody algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 20 (1986) no. 2, pp. 25-37. http://geodesic.mathdoc.fr/item/FAA_1986_20_2_a3/

[1] Feigin B.L., Fuchs D.B., “Representations of the Virasoro algebra”, Representations of infinite-dimensional Lie groups and Lie algebras, Gordon and Breach, New York, 1986 | MR

[2] Kats V.G., “Prostye neprivodimye graduirovannye algebry Li konechnogo rosta”, Izv. AN SSSR, ser. mat., 32:6 (1968), 1323–1367 | MR | Zbl

[3] Kats V.G., “Beskonechnomernye algebry Li i $\eta$-funktsiya Dedekinda”, Funktsion. analiz i ego pril., 8:1 (1974), 77–78 | MR | Zbl

[4] Kac V.G., Infinite dimensional Lie algebras, Birkhauser, 1983 | MR

[5] Kac V.G., Kazhdan D.A., “Structure of representations with highest weight of infinite dimensional Lie algebras”, Adv. Math., 34 (1979), 97–108 | DOI | MR | Zbl

[6] Kac V.G., Peterson D.H., “Infinite dimensional Lie algebras, theta functions and modular forms”, Adv. Math., 50 (1983) | MR

[7] Bocha-Caridi A., Wallach N.R., “Highest weigt modules over graded Lie algebras: resolutions, filtrations and character formulas”, Trans. Amer. Math. Soc., 277, no. 1, 1983, 133–162 | DOI | MR

[8] Zhelobenko D.P., “Introduction to the theory of $S$-algebras over reductive Lie algebras”, Representations of infinite - dimensional Lie groups and Lie algebras, Gordon and Breach, New York, 1986 | MR