A simple combinatorial method for proving the Jacobi identity and its generalizations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 20 (1986) no. 1, pp. 77-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1986_20_1_a14,
     author = {Z. I. Leibenzon},
     title = {A simple combinatorial method for proving the {Jacobi} identity and its generalizations},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {77--78},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1986_20_1_a14/}
}
TY  - JOUR
AU  - Z. I. Leibenzon
TI  - A simple combinatorial method for proving the Jacobi identity and its generalizations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1986
SP  - 77
EP  - 78
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1986_20_1_a14/
LA  - ru
ID  - FAA_1986_20_1_a14
ER  - 
%0 Journal Article
%A Z. I. Leibenzon
%T A simple combinatorial method for proving the Jacobi identity and its generalizations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1986
%P 77-78
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1986_20_1_a14/
%G ru
%F FAA_1986_20_1_a14
Z. I. Leibenzon. A simple combinatorial method for proving the Jacobi identity and its generalizations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 20 (1986) no. 1, pp. 77-78. http://geodesic.mathdoc.fr/item/FAA_1986_20_1_a14/

[1] Wright E.M., J. London Math. Soc., 40 (1965), 55–57 | DOI | MR | Zbl

[2] Sudler C.Jr., Proc. Edinburgh Math. Soc., part 1, 15, 1966, 67–71 | DOI | MR | Zbl

[3] Zolnowsky J., Discrete Math., 9:3 (1974), 293–298 | DOI | MR | Zbl

[4] Lewis R.P., Amer. Math. Monthly, Aug–Sept., 91, no. 7, 1984, 420–423 | DOI | MR | Zbl