The octahedron is badly approximated by random subspaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 20 (1986) no. 1, pp. 14-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1986_20_1_a1,
     author = {E. D. Gluskin},
     title = {The octahedron is badly approximated by random subspaces},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {14--20},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1986_20_1_a1/}
}
TY  - JOUR
AU  - E. D. Gluskin
TI  - The octahedron is badly approximated by random subspaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1986
SP  - 14
EP  - 20
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1986_20_1_a1/
LA  - ru
ID  - FAA_1986_20_1_a1
ER  - 
%0 Journal Article
%A E. D. Gluskin
%T The octahedron is badly approximated by random subspaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1986
%P 14-20
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1986_20_1_a1/
%G ru
%F FAA_1986_20_1_a1
E. D. Gluskin. The octahedron is badly approximated by random subspaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 20 (1986) no. 1, pp. 14-20. http://geodesic.mathdoc.fr/item/FAA_1986_20_1_a1/

[1] Kashin B.S., “Poperechniki nekotorykh konechnomernykh mnozhestv i klassov gladkikh funktsii”, Izv. AN SSSR. Ser. mat., 41 (1977), 334–351 | Zbl

[2] Gluskin E.D., “Normy sluchainykh matrits i poperechniki konechnomernykh mnozhestv”, Mat. sb., 120:2 (1983), 180–189 | MR | Zbl

[3] Garnaev A.Yu., Gluskin E.D., “O poperechnikakh evklidova shara”, DAN SSSR, 277:5 (1984), 1048–1052 | MR | Zbl

[4] Kashin B.S., “O poperechnikakh oktaedrov”, UMN, 30:4 (1975), 251–252 | MR | Zbl

[5] Stechkin S.B., “O nailuchshikh priblizheniyakh zadannykh klassov funktsii lyubymi polinomami”, UMN, 9:1 (1954), 133–134

[6] Solomyak M.3., Tikhomirov V.M., “O geometricheskikh kharakteristikakh vlozheniya klassov $W_p^\alpha$ v $C$”, Izv. vuzov. Ser. mat., 1967, no. 10, 76–82 | MR | Zbl

[7] Ismagilov R.S., “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizheniya funktsii trigonometricheskimi mnogochlenami”, UMN, 29:3 (1974), 161–178 | MR | Zbl

[8] Kashin B.S., “O kolmogorovskikh poperechnikakh oktaedrov”, DAN SSSR, 214:5 (1974), 1024–1026 | Zbl

[9] Höllig K., “Approximationzahlen von Sobolev–Einbettungen”, Math. Ann., 242:3 (1979), 273–281 | DOI | MR | Zbl

[10] Sudakov V.N., Tsirelson B.S., “Ekstremalnye svoistva poluprostranstv dlya sfericheski invariantnykh mer”, Problemy teorii veroyatnostnykh raspredelenii, Zap. nauchn. sem. LOMI, 41, 1974, 14–24 | MR | Zbl

[11] Borell C., “The Brunn–Minkowski inequality in Gauss space”, Invent. Math., 30:2 (1975), 207–216 | DOI | MR | Zbl

[12] Fiegel T., Lindestrauss J., Milman V.D., “The dimension of almost spherical sections of convex bodies”, Acta Math., 139 (1977), 53–94 | DOI | MR

[13] Gluskin E.D., “Ob otsenkakh snizu poperechnikov nekotorykh konechnomernykh mnozhestv”, UMN, 36:2 (1981), 179–180 | MR | Zbl

[14] Levenshtein V.I., “Granitsy dlya upakovok metricheskikh prostranstv i nekotorye ikh prilozheniya”, Problemy kibernetiki, 1983, no. 40, 43–110 | MR