The Nielsen zeta function
Funkcionalʹnyj analiz i ego priloženiâ, Tome 19 (1985) no. 4, pp. 61-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1985_19_4_a6,
     author = {V. B. Pilyugina and A. L. Fel'shtyn},
     title = {The {Nielsen} zeta function},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {61--67},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1985_19_4_a6/}
}
TY  - JOUR
AU  - V. B. Pilyugina
AU  - A. L. Fel'shtyn
TI  - The Nielsen zeta function
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1985
SP  - 61
EP  - 67
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1985_19_4_a6/
LA  - ru
ID  - FAA_1985_19_4_a6
ER  - 
%0 Journal Article
%A V. B. Pilyugina
%A A. L. Fel'shtyn
%T The Nielsen zeta function
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1985
%P 61-67
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1985_19_4_a6/
%G ru
%F FAA_1985_19_4_a6
V. B. Pilyugina; A. L. Fel'shtyn. The Nielsen zeta function. Funkcionalʹnyj analiz i ego priloženiâ, Tome 19 (1985) no. 4, pp. 61-67. http://geodesic.mathdoc.fr/item/FAA_1985_19_4_a6/

[1] Artin M., Mazur B., “On periodic points”, Ann. Math., 81:1 (1965), 82–99 | DOI | MR | Zbl

[2] Manning A., “Axion A doffeomorphism have rational zeta function”, Bull. London Math. Soc., 1971, no. 3, 215–220 | DOI | MR | Zbl

[3] Smale S., “Differentiable dynamicalj systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817 | DOI | MR

[4] Nielsen J., “Untersuchingen zur Topology der geschlossenen zweiseitigen Flachen”, Acta Math., 50 (1927), 189–348 | DOI | MR

[5] Boju Jang, Nielsen fixed point theory, Contemporary Math., 14, 1983 | MR | Zbl

[6] Ivanov N.V., “Entropiya i chisla Nilsena”, DAN SSSR, 265:2 (1982), 284–286 | MR

[7] Przytycki F., “An upper estimation for topological entropy”, Invent. Math., 59 (1980), 205–213 | DOI | MR | Zbl

[8] Thurston W.P., 6n the geometry and dynamics of diffeomorphisms of surface. I, Prepprint, Prinston Univ., 1977 | MR

[9] Fathi A., Shub M., “Some dynamics of pseudo-Anosov diffeomorphisms”, Astérisque, 66–67, 1979, 181–207 | Zbl

[10] Ivanov H.B., “Chisla Nilsena otobrazhenii poverkhnostei”, Zap. nauchn. sem. LOMI, 122, 1982, 56–66

[11] Rokhlin V.A., Fuks D.B., Nachalnyi kurs topologii. Geometricheskie glavy, Nauka, M., 1977 | MR | Zbl

[12] Gladkie dinamicheskie sistemy, Mir, M., 1977 | MR

[13] Brooks R., Brown R.F., Pak J., Taylor D.H., “Nielsen numbers of maps of tori”, Proc. Amer. Math. Soc., 52 (1975), 398–400 | DOI | MR | Zbl

[14] Shub M., “Endomorphisms of compact differentiable manifolds”, Amer. J. Math., 91 (1969), 175–179 | DOI | MR

[15] Franks J., “Homology and dynamical systems”, Regional Conf. Ser. Math., 1982, no. 49, 1–120 | MR

[16] Fried D., “Periodic points and twisted coefficients”, Lect. Notes Math., 1007, 1983, 261–293 | DOI | MR | Zbl

[17] Fried D., “Homological identities for closed orbits”, Invent. Math., 71 (1983), 419–442 | DOI | MR | Zbl

[18] Felshtyn A.L., “Novaya dzeta-funktsiya v dinamike”, Tezisy dokladov X Mezhd. konf. po nelineinym kolebaniyam, Varna, NRB, 1984, 208